ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00736
  4. Cited By
Large-Scale Wasserstein Gradient Flows

Large-Scale Wasserstein Gradient Flows

1 June 2021
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
ArXivPDFHTML

Papers citing "Large-Scale Wasserstein Gradient Flows"

29 / 29 papers shown
Title
From Missing Pieces to Masterpieces: Image Completion with Context-Adaptive Diffusion
From Missing Pieces to Masterpieces: Image Completion with Context-Adaptive Diffusion
Pourya Shamsolmoali
Masoumeh Zareapoor
Huiyu Zhou
Michael Felsberg
Dacheng Tao
Xiaomeng Li
DiffM
39
0
0
19 Apr 2025
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Shuailong Zhu
Xiaohui Chen
77
0
0
28 Jan 2025
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Shang Wu
Yazhen Wang
43
0
0
11 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
57
2
0
08 Jan 2025
Local Flow Matching Generative Models
Local Flow Matching Generative Models
Chen Xu
Xiuyuan Cheng
Yao Xie
44
0
0
03 Jan 2025
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
41
0
0
03 Oct 2024
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Xun Tang
Michael Shavlovsky
Holakou Rahmanian
Elisa Tardini
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
OT
39
4
0
20 Jan 2024
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Ilana Sebag
Muni Sreenivas Pydi
Jean-Yves Franceschi
Alain Rakotomamonjy
Mike Gartrell
Jamal Atif
Alexandre Allauzen
24
2
0
13 Dec 2023
A Computational Framework for Solving Wasserstein Lagrangian Flows
A Computational Framework for Solving Wasserstein Lagrangian Flows
Kirill Neklyudov
Rob Brekelmans
Alexander Tong
Lazar Atanackovic
Qiang Liu
Alireza Makhzani
OT
37
18
0
16 Oct 2023
Generating Synthetic Datasets by Interpolating along Generalized
  Geodesics
Generating Synthetic Datasets by Interpolating along Generalized Geodesics
JiaoJiao Fan
David Alvarez-Melis
24
10
0
12 Jun 2023
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Hanna Ziesche
Leonel Rozo
26
5
0
17 May 2023
Self-Consistent Velocity Matching of Probability Flows
Self-Consistent Velocity Matching of Probability Flows
Lingxiao Li
Samuel Hurault
Justin Solomon
32
12
0
31 Jan 2023
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
27
19
0
25 Nov 2022
Proximal Mean Field Learning in Shallow Neural Networks
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
43
1
0
25 Oct 2022
InfoOT: Information Maximizing Optimal Transport
InfoOT: Information Maximizing Optimal Transport
Ching-Yao Chuang
Stefanie Jegelka
David Alvarez-Melis
OT
35
12
0
06 Oct 2022
Discrete Langevin Sampler via Wasserstein Gradient Flow
Discrete Langevin Sampler via Wasserstein Gradient Flow
Haoran Sun
H. Dai
Bo Dai
Haomin Zhou
Dale Schuurmans
BDL
42
19
0
29 Jun 2022
Meta Optimal Transport
Meta Optimal Transport
Brandon Amos
Samuel N. Cohen
Giulia Luise
I. Redko
OT
29
22
0
10 Jun 2022
Learning with Stochastic Orders
Learning with Stochastic Orders
Carles Domingo-Enrich
Yair Schiff
Youssef Mroueh
35
2
0
27 May 2022
Wasserstein Iterative Networks for Barycenter Estimation
Wasserstein Iterative Networks for Barycenter Estimation
Alexander Korotin
Vage Egiazarian
Lingxiao Li
Evgeny Burnaev
29
24
0
28 Jan 2022
Learning Proximal Operators to Discover Multiple Optima
Learning Proximal Operators to Discover Multiple Optima
Lingxiao Li
Noam Aigerman
Vladimir G. Kim
Jiajin Li
Kristjan Greenewald
Mikhail Yurochkin
Justin Solomon
47
1
0
28 Jan 2022
Variational Wasserstein gradient flow
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
72
54
0
04 Dec 2021
Input Convex Gradient Networks
Input Convex Gradient Networks
Jack Richter-Powell
Jonathan Lorraine
Brandon Amos
12
15
0
23 Nov 2021
Efficient Gradient Flows in Sliced-Wasserstein Space
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
34
21
0
21 Oct 2021
Proximal Optimal Transport Modeling of Population Dynamics
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
51
81
0
11 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
53
0
01 Jun 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Wasserstein-2 Generative Networks
Wasserstein-2 Generative Networks
Alexander Korotin
Vage Egiazarian
Arip Asadulaev
Alexander Safin
E. Burnaev
GAN
131
100
0
28 Sep 2019
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
197
633
0
29 Nov 2018
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
187
599
0
22 Sep 2016
1