ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00638
  4. Cited By
Quantifying Predictive Uncertainty in Medical Image Analysis with Deep
  Kernel Learning

Quantifying Predictive Uncertainty in Medical Image Analysis with Deep Kernel Learning

1 June 2021
Zhiliang Wu
Yinchong Yang
Jindong Gu
Volker Tresp
    UQCV
    MedIm
ArXivPDFHTML

Papers citing "Quantifying Predictive Uncertainty in Medical Image Analysis with Deep Kernel Learning"

29 / 29 papers shown
Title
Introspective Learning by Distilling Knowledge from Online
  Self-explanation
Introspective Learning by Distilling Knowledge from Online Self-explanation
Jindong Gu
Zhiliang Wu
Volker Tresp
30
3
0
19 Sep 2020
A Metric Learning Reality Check
A Metric Learning Reality Check
Kevin Musgrave
Serge J. Belongie
Ser-Nam Lim
134
477
0
18 Mar 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
  Calibration in Deep Learning
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
79
227
0
16 Mar 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
393
10,591
0
17 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
364
18,752
0
13 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
493
42,407
0
03 Dec 2019
Holistic and Comprehensive Annotation of Clinically Significant Findings
  on Diverse CT Images: Learning from Radiology Reports and Label Ontology
Holistic and Comprehensive Annotation of Clinically Significant Findings on Diverse CT Images: Learning from Radiology Reports and Label Ontology
Ke Yan
Yifan Peng
V. Sandfort
M. Bagheri
Zhiyong Lu
Ronald M. Summers
MedIm
34
68
0
09 Apr 2019
Understanding Individual Decisions of CNNs via Contrastive
  Backpropagation
Understanding Individual Decisions of CNNs via Contrastive Backpropagation
Jindong Gu
Yinchong Yang
Volker Tresp
FAtt
55
97
0
05 Dec 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
136
1,098
0
28 Sep 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
85
690
0
03 Jul 2018
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep
  Learning
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
Pranav Rajpurkar
Jeremy Irvin
Kaylie Zhu
Brandon Yang
Hershel Mehta
...
Aarti Bagul
C. Langlotz
K. Shpanskaya
M. Lungren
A. Ng
LM&MA
78
2,702
0
14 Nov 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in
  Gaussian Process Hybrid Deep Networks
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
98
171
0
08 Jul 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,827
0
14 Jun 2017
ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on
  Weakly-Supervised Classification and Localization of Common Thorax Diseases
ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases
Xiaosong Wang
Yifan Peng
Le Lu
Zhiyong Lu
M. Bagheri
Ronald M. Summers
LM&MA
156
2,525
0
05 May 2017
In Defense of the Triplet Loss for Person Re-Identification
In Defense of the Triplet Loss for Person Re-Identification
Alexander Hermans
Lucas Beyer
Bastian Leibe
DML
78
3,205
0
22 Mar 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
352
4,705
0
15 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
831
5,811
0
05 Dec 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
772
36,794
0
25 Aug 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
243
885
0
06 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
821
9,306
0
06 Jun 2015
FaceNet: A Unified Embedding for Face Recognition and Clustering
FaceNet: A Unified Embedding for Face Recognition and Clustering
Florian Schroff
Dmitry Kalenichenko
James Philbin
3DH
370
13,143
0
12 Mar 2015
Kernel Interpolation for Scalable Structured Gaussian Processes
  (KISS-GP)
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
61
513
0
03 Mar 2015
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
161
3,271
0
05 Dec 2014
Scalable Variational Gaussian Process Classification
Scalable Variational Gaussian Process Classification
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
70
643
0
07 Nov 2014
How transferable are features in deep neural networks?
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
231
8,336
0
06 Nov 2014
CNN Features off-the-shelf: an Astounding Baseline for Recognition
CNN Features off-the-shelf: an Astounding Baseline for Recognition
A. Razavian
Hossein Azizpour
Josephine Sullivan
S. Carlsson
157
4,942
0
23 Mar 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
104
1,230
0
26 Sep 2013
Kernels for Vector-Valued Functions: a Review
Kernels for Vector-Valued Functions: a Review
Mauricio A. Alvarez
Lorenzo Rosasco
Neil D. Lawrence
GP
207
925
0
30 Jun 2011
1