ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00545
  4. Cited By
Counterfactual Invariance to Spurious Correlations: Why and How to Pass
  Stress Tests

Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests

31 May 2021
Victor Veitch
Alexander DÁmour
Steve Yadlowsky
Jacob Eisenstein
    OOD
ArXivPDFHTML

Papers citing "Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests"

23 / 23 papers shown
Title
Automated Meta Prompt Engineering for Alignment with the Theory of Mind
Automated Meta Prompt Engineering for Alignment with the Theory of Mind
Aaron Baughman
Rahul Agarwal
Eduardo Morales
Gozde Akay
36
0
0
13 May 2025
Predictive Churn with the Set of Good Models
Predictive Churn with the Set of Good Models
J. Watson-Daniels
Flavio du Pin Calmon
Alexander DÁmour
Carol Xuan Long
David C. Parkes
Berk Ustun
83
7
0
12 Feb 2024
Out-of-Distribution Generalization in Text Classification: Past,
  Present, and Future
Out-of-Distribution Generalization in Text Classification: Past, Present, and Future
Linyi Yang
Yangqiu Song
Xuan Ren
Chenyang Lyu
Yidong Wang
Lingqiao Liu
Jindong Wang
Jennifer Foster
Yue Zhang
OOD
37
2
0
23 May 2023
Beyond Distribution Shift: Spurious Features Through the Lens of
  Training Dynamics
Beyond Distribution Shift: Spurious Features Through the Lens of Training Dynamics
Nihal Murali
A. Puli
Ke Yu
Rajesh Ranganath
Kayhan Batmanghelich
AAML
40
8
0
18 Feb 2023
MMD-B-Fair: Learning Fair Representations with Statistical Testing
MMD-B-Fair: Learning Fair Representations with Statistical Testing
Namrata Deka
Danica J. Sutherland
20
6
0
15 Nov 2022
DC-Check: A Data-Centric AI checklist to guide the development of
  reliable machine learning systems
DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning systems
Nabeel Seedat
F. Imrie
M. Schaar
27
12
0
09 Nov 2022
On Feature Learning in the Presence of Spurious Correlations
On Feature Learning in the Presence of Spurious Correlations
Pavel Izmailov
Polina Kirichenko
Nate Gruver
A. Wilson
34
117
0
20 Oct 2022
FAST: Improving Controllability for Text Generation with Feedback Aware
  Self-Training
FAST: Improving Controllability for Text Generation with Feedback Aware Self-Training
Junyi Chai
Reid Pryzant
Victor Ye Dong
Konstantin Golobokov
Chenguang Zhu
Yi Liu
34
5
0
06 Oct 2022
Fairness and robustness in anti-causal prediction
Fairness and robustness in anti-causal prediction
Maggie Makar
Alexander DÁmour
OOD
36
10
0
20 Sep 2022
Causal Intervention Improves Implicit Sentiment Analysis
Causal Intervention Improves Implicit Sentiment Analysis
Siyin Wang
Jie Zhou
Changzhi Sun
Junjie Ye
Tao Gui
Qi Zhang
Xuanjing Huang
41
16
0
19 Aug 2022
Invariant and Transportable Representations for Anti-Causal Domain
  Shifts
Invariant and Transportable Representations for Anti-Causal Domain Shifts
Yibo Jiang
Victor Veitch
OOD
123
32
0
04 Jul 2022
Causal Discovery in Heterogeneous Environments Under the Sparse
  Mechanism Shift Hypothesis
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
41
48
0
04 Jun 2022
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs
  in Larger Test Graphs
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
Yangze Zhou
Gitta Kutyniok
Bruno Ribeiro
OODD
AI4CE
75
37
0
30 May 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious
  Correlations
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
34
318
0
06 Apr 2022
FaiRR: Faithful and Robust Deductive Reasoning over Natural Language
FaiRR: Faithful and Robust Deductive Reasoning over Natural Language
Soumya Sanyal
Harman Singh
Xiang Ren
ReLM
LRM
24
44
0
19 Mar 2022
Measure and Improve Robustness in NLP Models: A Survey
Measure and Improve Robustness in NLP Models: A Survey
Xuezhi Wang
Haohan Wang
Diyi Yang
139
130
0
15 Dec 2021
Learning Invariant Representations with Missing Data
Learning Invariant Representations with Missing Data
Mark Goldstein
J. Jacobsen
O. Chau
A. Saporta
A. Puli
Rajesh Ranganath
Andrew C. Miller
OOD
17
5
0
01 Dec 2021
Desiderata for Representation Learning: A Causal Perspective
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
32
80
0
08 Sep 2021
Causal Inference in Natural Language Processing: Estimation, Prediction,
  Interpretation and Beyond
Causal Inference in Natural Language Processing: Estimation, Prediction, Interpretation and Beyond
Amir Feder
Katherine A. Keith
Emaad A. Manzoor
Reid Pryzant
Dhanya Sridhar
...
Roi Reichart
Margaret E. Roberts
Brandon M Stewart
Victor Veitch
Diyi Yang
CML
38
234
0
02 Sep 2021
An Investigation of the (In)effectiveness of Counterfactually Augmented
  Data
An Investigation of the (In)effectiveness of Counterfactually Augmented Data
Nitish Joshi
He He
OODD
19
46
0
01 Jul 2021
Data Augmentation using Pre-trained Transformer Models
Data Augmentation using Pre-trained Transformer Models
Varun Kumar
Ashutosh Choudhary
Eunah Cho
VLM
214
347
0
04 Mar 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
313
0
07 Feb 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
323
4,212
0
23 Aug 2019
1