ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00497
  4. Cited By
Omnizart: A General Toolbox for Automatic Music Transcription

Omnizart: A General Toolbox for Automatic Music Transcription

1 June 2021
Yu-Te Wu
Yin-Jyun Luo
Tsung-Ping Chen
I-Chieh Wei
Jui-Yang Hsu
Yi-Chin Chuang
Li Su
    SyDa
ArXiv (abs)PDFHTML

Papers citing "Omnizart: A General Toolbox for Automatic Music Transcription"

11 / 11 papers shown
Title
Enabling Factorized Piano Music Modeling and Generation with the MAESTRO
  Dataset
Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset
Curtis Hawthorne
Andriy Stasyuk
Adam Roberts
Ian Simon
Cheng-Zhi Anna Huang
Sander Dieleman
Erich Elsen
Jesse Engel
Douglas Eck
414
451
0
29 Oct 2018
Vocal melody extraction using patch-based CNN
Vocal melody extraction using patch-based CNN
Li Su
55
48
0
24 Apr 2018
Image Transformer
Image Transformer
Niki Parmar
Ashish Vaswani
Jakob Uszkoreit
Lukasz Kaiser
Noam M. Shazeer
Alexander Ku
Dustin Tran
ViT
138
1,680
0
15 Feb 2018
Encoder-Decoder with Atrous Separable Convolution for Semantic Image
  Segmentation
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Liang-Chieh Chen
Yukun Zhu
George Papandreou
Florian Schroff
Hartwig Adam
SSeg
453
13,143
0
07 Feb 2018
ShakeDrop Regularization for Deep Residual Learning
ShakeDrop Regularization for Deep Residual Learning
Yoshihiro Yamada
Masakazu Iwamura
Takuya Akiba
K. Kise
84
164
0
07 Feb 2018
Invariances and Data Augmentation for Supervised Music Transcription
Invariances and Data Augmentation for Supervised Music Transcription
John Thickstun
Zaïd Harchaoui
Dean Phillips Foster
Sham Kakade
163
62
0
13 Nov 2017
Virtual Adversarial Training: A Regularization Method for Supervised and
  Semi-Supervised Learning
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Takeru Miyato
S. Maeda
Masanori Koyama
S. Ishii
GAN
148
2,734
0
13 Apr 2017
On the Potential of Simple Framewise Approaches to Piano Transcription
On the Potential of Simple Framewise Approaches to Piano Transcription
Rainer Kelz
Matthias Dorfer
Filip Korzeniowski
Sebastian Böck
A. Arzt
Gerhard Widmer
156
124
0
15 Dec 2016
Learning Features of Music from Scratch
Learning Features of Music from Scratch
John Thickstun
Zaïd Harchaoui
Sham Kakade
159
202
0
29 Nov 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNNAI4CE
433
18,361
0
27 May 2016
madmom: a new Python Audio and Music Signal Processing Library
madmom: a new Python Audio and Music Signal Processing Library
Sebastian Böck
Filip Korzeniowski
Jan Schluter
Florian Krebs
Gerhard Widmer
VLM
69
280
0
23 May 2016
1