ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.09827
20
199

Learning Features of Music from Scratch

29 November 2016
John Thickstun
Zaïd Harchaoui
Sham Kakade
ArXivPDFHTML
Abstract

This paper introduces a new large-scale music dataset, MusicNet, to serve as a source of supervision and evaluation of machine learning methods for music research. MusicNet consists of hundreds of freely-licensed classical music recordings by 10 composers, written for 11 instruments, together with instrument/note annotations resulting in over 1 million temporal labels on 34 hours of chamber music performances under various studio and microphone conditions. The paper defines a multi-label classification task to predict notes in musical recordings, along with an evaluation protocol, and benchmarks several machine learning architectures for this task: i) learning from spectrogram features; ii) end-to-end learning with a neural net; iii) end-to-end learning with a convolutional neural net. These experiments show that end-to-end models trained for note prediction learn frequency selective filters as a low-level representation of audio.

View on arXiv
Comments on this paper