ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.14257
  4. Cited By
Diffusion-Based Representation Learning

Diffusion-Based Representation Learning

29 May 2021
K. Abstreiter
Sarthak Mittal
Stefan Bauer
Bernhard Schölkopf
Arash Mehrjou
    DiffM
ArXivPDFHTML

Papers citing "Diffusion-Based Representation Learning"

50 / 50 papers shown
Title
Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling
Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling
Xiao Li
Zekai Zhang
Xiang Li
Siyi Chen
Zhihui Zhu
Peng Wang
Qing Qu
DiffM
136
1
0
09 Feb 2025
Pretrained Reversible Generation as Unsupervised Visual Representation Learning
Pretrained Reversible Generation as Unsupervised Visual Representation Learning
Rongkun Xue
Jinouwen Zhang
Yazhe Niu
Dazhong Shen
Bingqi Ma
Yu Liu
Jing Yang
134
0
0
29 Nov 2024
Assessing Open-world Forgetting in Generative Image Model Customization
Assessing Open-world Forgetting in Generative Image Model Customization
Héctor Laria
Alex Gomez-Villa
Imad Eddine Marouf
Bogdan Raducanu
Bogdan Raducanu
VLM
DiffM
85
0
0
18 Oct 2024
UniGEM: A Unified Approach to Generation and Property Prediction for Molecules
UniGEM: A Unified Approach to Generation and Property Prediction for Molecules
Shikun Feng
Yuyan Ni
Yan Lu
Zhi-Ming Ma
Wei-Ying Ma
Yanyan Lan
76
6
0
14 Oct 2024
Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think
Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think
Sihyun Yu
Sangkyung Kwak
Huiwon Jang
Jongheon Jeong
Jonathan Huang
Jinwoo Shin
Saining Xie
OCL
142
85
0
09 Oct 2024
On the Challenges and Opportunities in Generative AI
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
216
21
0
28 Feb 2024
Diffusion Models for Video Prediction and Infilling
Diffusion Models for Video Prediction and Infilling
Tobias Höppe
Arash Mehrjou
Stefan Bauer
Didrik Nielsen
Andrea Dittadi
DiffM
VGen
88
135
0
15 Jun 2022
Video Diffusion Models
Video Diffusion Models
Jonathan Ho
Tim Salimans
Alexey A. Gritsenko
William Chan
Mohammad Norouzi
David J. Fleet
DiffM
VGen
204
1,610
0
07 Apr 2022
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from
  Low-Dimensional Latents
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents
Kushagra Pandey
Avideep Mukherjee
Piyush Rai
Abhishek Kumar
DiffM
70
118
0
02 Jan 2022
Diffusion Autoencoders: Toward a Meaningful and Decodable Representation
Diffusion Autoencoders: Toward a Meaningful and Decodable Representation
Konpat Preechakul
Nattanat Chatthee
Suttisak Wizadwongsa
Supasorn Suwajanakorn
SyDa
DiffM
114
431
0
30 Nov 2021
Variational Diffusion Models
Variational Diffusion Models
Diederik P. Kingma
Tim Salimans
Ben Poole
Jonathan Ho
DiffM
173
1,120
0
01 Jul 2021
Cascaded Diffusion Models for High Fidelity Image Generation
Cascaded Diffusion Models for High Fidelity Image Generation
Jonathan Ho
Chitwan Saharia
William Chan
David J. Fleet
Mohammad Norouzi
Tim Salimans
151
1,220
0
30 May 2021
Diffusion Models Beat GANs on Image Synthesis
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
219
7,831
0
11 May 2021
Symbolic Music Generation with Diffusion Models
Symbolic Music Generation with Diffusion Models
Gautam Mittal
Jesse Engel
Curtis Hawthorne
Ian Simon
MGen
DiffM
87
193
0
30 Mar 2021
Improved Denoising Diffusion Probabilistic Models
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
329
3,675
0
18 Feb 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
141
663
0
22 Jan 2021
Knowledge Distillation in Iterative Generative Models for Improved
  Sampling Speed
Knowledge Distillation in Iterative Generative Models for Improved Sampling Speed
Eric Luhman
Troy Luhman
DiffM
233
277
0
07 Jan 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
330
6,453
0
26 Nov 2020
Exploring Simple Siamese Representation Learning
Exploring Simple Siamese Representation Learning
Xinlei Chen
Kaiming He
SSL
253
4,052
0
20 Nov 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
260
7,356
0
06 Oct 2020
DiffWave: A Versatile Diffusion Model for Audio Synthesis
DiffWave: A Versatile Diffusion Model for Audio Synthesis
Zhifeng Kong
Ming-Yu Liu
Jiaji Huang
Kexin Zhao
Bryan Catanzaro
DiffM
BDL
149
1,456
0
21 Sep 2020
Adversarial score matching and improved sampling for image generation
Adversarial score matching and improved sampling for image generation
Alexia Jolicoeur-Martineau
Remi Piche-Taillefer
Rémi Tachet des Combes
Ioannis Mitliagkas
DiffM
63
126
0
11 Sep 2020
WaveGrad: Estimating Gradients for Waveform Generation
WaveGrad: Estimating Gradients for Waveform Generation
Nanxin Chen
Yu Zhang
Heiga Zen
Ron J. Weiss
Mohammad Norouzi
William Chan
DiffM
BDL
66
791
0
02 Sep 2020
Learning Gradient Fields for Shape Generation
Learning Gradient Fields for Shape Generation
Ruojin Cai
Guandao Yang
Hadar Averbuch-Elor
Jinwei Gu
Serge J. Belongie
Noah Snavely
B. Hariharan
3DPC
102
286
0
14 Aug 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
619
18,036
0
19 Jun 2020
Unsupervised Learning of Visual Features by Contrasting Cluster
  Assignments
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCL
SSL
230
4,074
0
17 Jun 2020
Improved Techniques for Training Score-Based Generative Models
Improved Techniques for Training Score-Based Generative Models
Yang Song
Stefano Ermon
DiffM
230
1,151
0
16 Jun 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
363
6,797
0
13 Jun 2020
Permutation Invariant Graph Generation via Score-Based Generative
  Modeling
Permutation Invariant Graph Generation via Score-Based Generative Modeling
Chenhao Niu
Yang Song
Jiaming Song
Shengjia Zhao
Aditya Grover
Stefano Ermon
DiffM
66
270
0
02 Mar 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
393
10,591
0
17 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
361
18,752
0
13 Feb 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
243
3,902
0
12 Jul 2019
Large Scale Adversarial Representation Learning
Large Scale Adversarial Representation Learning
Jeff Donahue
Karen Simonyan
SSL
124
543
0
04 Jul 2019
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
115
1,466
0
29 Nov 2018
MD-GAN: Multi-Discriminator Generative Adversarial Networks for
  Distributed Datasets
MD-GAN: Multi-Discriminator Generative Adversarial Networks for Distributed Datasets
Corentin Hardy
Erwan Le Merrer
B. Sericola
GAN
110
180
0
09 Nov 2018
On Catastrophic Forgetting and Mode Collapse in Generative Adversarial
  Networks
On Catastrophic Forgetting and Mode Collapse in Generative Adversarial Networks
Hoang Thanh-Tung
T. Tran
GAN
39
58
0
11 Jul 2018
Deep Energy Estimator Networks
Deep Energy Estimator Networks
Saeed Saremi
Arash Mehrjou
Bernhard Schölkopf
Aapo Hyvarinen
54
75
0
21 May 2018
Tempered Adversarial Networks
Tempered Adversarial Networks
Mehdi S. M. Sajjadi
Giambattista Parascandolo
Arash Mehrjou
Bernhard Schölkopf
GAN
49
28
0
12 Feb 2018
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
226
5,008
0
02 Nov 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
278
9,760
0
25 Oct 2017
Annealed Generative Adversarial Networks
Annealed Generative Adversarial Networks
Arash Mehrjou
Bernhard Schölkopf
Saeed Saremi
GAN
45
13
0
21 May 2017
Controlling Perceptual Factors in Neural Style Transfer
Controlling Perceptual Factors in Neural Style Transfer
Leon A. Gatys
Alexander S. Ecker
Matthias Bethge
Aaron Hertzmann
Eli Shechtman
34
464
0
23 Nov 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
365
7,321
0
13 Jun 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
157
4,235
0
12 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
149
1,655
0
02 Jun 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
250
14,008
0
19 Nov 2015
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
126
1,145
0
05 Nov 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
293
6,931
0
12 Mar 2015
Scheduled denoising autoencoders
Scheduled denoising autoencoders
Krzysztof J. Geras
Charles Sutton
87
47
0
12 Jun 2014
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
256
12,435
0
24 Jun 2012
1