ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.12807
  4. Cited By
XOmiVAE: an interpretable deep learning model for cancer classification
  using high-dimensional omics data

XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data

26 May 2021
Eloise Withnell
Xiaoyu Zhang
Kai Sun
Yike Guo
ArXivPDFHTML

Papers citing "XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data"

14 / 14 papers shown
Title
GeSubNet: Gene Interaction Inference for Disease Subtype Network Generation
GeSubNet: Gene Interaction Inference for Disease Subtype Network Generation
Ziwei Yang
Zheng Chen
Xin Liu
Rikuto Kotoge
Peng Chen
Yasuko Matsubara
Yasushi Sakurai
Jimeng Sun
34
0
0
17 Oct 2024
Explain Variance of Prediction in Variational Time Series Models for
  Clinical Deterioration Prediction
Explain Variance of Prediction in Variational Time Series Models for Clinical Deterioration Prediction
Jiacheng Liu
Jaideep Srivastava
33
0
0
09 Feb 2024
XAI meets Biology: A Comprehensive Review of Explainable AI in
  Bioinformatics Applications
XAI meets Biology: A Comprehensive Review of Explainable AI in Bioinformatics Applications
Zhongliang Zhou
Mengxuan Hu
Mariah Salcedo
Nathan Gravel
Wayland Yeung
Aarya Venkat
Dongliang Guo
Jielu Zhang
N. Kannan
Sheng Li
30
6
0
11 Dec 2023
A Refutation of Shapley Values for Explainability
A Refutation of Shapley Values for Explainability
Xuanxiang Huang
Sasha Rubin
FAtt
26
3
0
06 Sep 2023
MoCLIM: Towards Accurate Cancer Subtyping via Multi-Omics Contrastive
  Learning with Omics-Inference Modeling
MoCLIM: Towards Accurate Cancer Subtyping via Multi-Omics Contrastive Learning with Omics-Inference Modeling
Ziwei Yang
Zhengjun Chen
Yasuko Matsubara
Yasushi Sakurai
27
2
0
17 Aug 2023
The Inadequacy of Shapley Values for Explainability
The Inadequacy of Shapley Values for Explainability
Xuanxiang Huang
Sasha Rubin
FAtt
37
41
0
16 Feb 2023
CustOmics: A versatile deep-learning based strategy for multi-omics
  integration
CustOmics: A versatile deep-learning based strategy for multi-omics integration
Hakim Benkirane
Yoann Pradat
Stefan Michiels
P. Cournède
SyDa
16
4
0
12 Sep 2022
A Fair Experimental Comparison of Neural Network Architectures for
  Latent Representations of Multi-Omics for Drug Response Prediction
A Fair Experimental Comparison of Neural Network Architectures for Latent Representations of Multi-Omics for Drug Response Prediction
Tony Hauptmann
Stefan Kramer
AI4CE
11
1
0
31 Aug 2022
Cancer Subtyping by Improved Transcriptomic Features Using Vector
  Quantized Variational Autoencoder
Cancer Subtyping by Improved Transcriptomic Features Using Vector Quantized Variational Autoencoder
Zheng Chen
Ziwei Yang
Lingwei Zhu
Guang Shi
Kun Yue
Takashi Matsubara
Shigehiko Kanaya
M. Altaf-Ul-Amin
DRL
11
5
0
20 Jul 2022
A systematic review of biologically-informed deep learning models for
  cancer: fundamental trends for encoding and interpreting oncology data
A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data
Magdalena Wysocka
Oskar Wysocki
Marie Zufferey
Dónal Landers
André Freitas
AI4CE
48
28
0
02 Jul 2022
Automated Cancer Subtyping via Vector Quantization Mutual Information
  Maximization
Automated Cancer Subtyping via Vector Quantization Mutual Information Maximization
Zheng Chen
Lingwei Zhu
Ziwei Yang
Takashi Matsubara
24
7
0
22 Jun 2022
OmiTrans: generative adversarial networks based omics-to-omics
  translation framework
OmiTrans: generative adversarial networks based omics-to-omics translation framework
Xiaoyu Zhang
Yike Guo
MedIm
50
5
0
27 Nov 2021
OmiEmbed: a unified multi-task deep learning framework for multi-omics
  data
OmiEmbed: a unified multi-task deep learning framework for multi-omics data
Xiaoyu Zhang
Yuting Xing
Kai Sun
Yike Guo
27
60
0
03 Feb 2021
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1