Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.11839
Cited By
v1
v2
v3 (latest)
DiBS: Differentiable Bayesian Structure Learning
25 May 2021
Lars Lorch
Jonas Rothfuss
Bernhard Schölkopf
Andreas Krause
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"DiBS: Differentiable Bayesian Structure Learning"
35 / 35 papers shown
Title
Causal Temporal Regime Structure Learning
Abdellah Rahmani
Pascal Frossard
CML
235
2
0
20 Feb 2025
Amortized Inference of Causal Models via Conditional Fixed-Point Iterations
Divyat Mahajan
Jannes Gladrow
Agrin Hilmkil
Cheng Zhang
M. Scetbon
113
2
0
08 Oct 2024
Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes
Georg Manten
Cecilia Casolo
E. Ferrucci
Søren Wengel Mogensen
C. Salvi
Niki Kilbertus
CML
BDL
203
12
0
28 Feb 2024
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Christian Toth
Christian Knoll
Franz Pernkopf
Robert Peharz
CML
112
1
0
22 Feb 2024
Parameter Priors for Directed Acyclic Graphical Models and the Characterization of Several Probability Distributions
D. Geiger
David Heckerman
137
195
0
05 May 2021
On the Convergence of Continuous Constrained Optimization for Structure Learning
Ignavier Ng
Sébastien Lachapelle
Nan Rosemary Ke
Simon Lacoste-Julien
Kun Zhang
83
38
0
23 Nov 2020
DAGs with No Fears: A Closer Look at Continuous Optimization for Learning Bayesian Networks
Dennis L. Wei
Tian Gao
Yue Yu
CML
83
71
0
18 Oct 2020
Differentiable Causal Discovery from Interventional Data
P. Brouillard
Sébastien Lachapelle
Alexandre Lacoste
Simon Lacoste-Julien
Alexandre Drouin
CML
66
189
0
03 Jul 2020
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs
Ignavier Ng
AmirEmad Ghassami
Kun Zhang
CML
57
190
0
17 Jun 2020
DYNOTEARS: Structure Learning from Time-Series Data
Roxana Pamfil
Nisara Sriwattanaworachai
Shaan Desai
Philip Pilgerstorfer
Paul Beaumont
K. Georgatzis
Bryon Aragam
CML
AI4TS
BDL
77
192
0
02 Feb 2020
A Graph Autoencoder Approach to Causal Structure Learning
Ignavier Ng
Shengyu Zhu
Zhitang Chen
Zhuangyan Fang
BDL
CML
60
83
0
18 Nov 2019
Masked Gradient-Based Causal Structure Learning
Ignavier Ng
Shengyu Zhu
Zhuangyan Fang
Haoyang Li
Zhitang Chen
Jun Wang
CML
121
117
0
18 Oct 2019
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks
Julius von Kügelgen
Paul Kishan Rubenstein
Bernhard Schölkopf
Adrian Weller
CML
57
20
0
09 Oct 2019
Learning Neural Causal Models from Unknown Interventions
Nan Rosemary Ke
O. Bilaniuk
Anirudh Goyal
Stefan Bauer
Hugo Larochelle
Bernhard Schölkopf
Michael C. Mozer
C. Pal
Yoshua Bengio
CML
OOD
107
169
0
02 Oct 2019
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric Xing
CML
165
260
0
29 Sep 2019
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
82
415
0
25 Jun 2019
Gradient-Based Neural DAG Learning
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
BDL
CML
64
275
0
05 Jun 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNN
BDL
CML
105
202
0
24 Apr 2019
DAG-GNN: DAG Structure Learning with Graph Neural Networks
Yue Yu
Jie Chen
Tian Gao
Mo Yu
BDL
CML
GNN
82
489
0
22 Apr 2019
Causal Discovery Toolbox: Uncover causal relationships in Python
Diviyan Kalainathan
Olivier Goudet
CML
51
82
0
06 Mar 2019
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
Yoshua Bengio
T. Deleu
Nasim Rahaman
Nan Rosemary Ke
Sébastien Lachapelle
O. Bilaniuk
Anirudh Goyal
C. Pal
CML
OOD
117
334
0
30 Jan 2019
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
Diviyan Kalainathan
Olivier Goudet
Isabelle M Guyon
David Lopez-Paz
Michèle Sebag
CML
58
95
0
13 Mar 2018
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric Xing
NoLa
CML
OffRL
102
949
0
04 Mar 2018
Variational Graph Auto-Encoders
Thomas Kipf
Max Welling
GNN
BDL
SSL
CML
153
3,592
0
21 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
198
2,537
0
02 Nov 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
80
1,094
0
16 Aug 2016
Partition MCMC for inference on acyclic digraphs
Jack Kuipers
G. Moffa
123
92
0
20 Apr 2015
Addendum on the scoring of Gaussian directed acyclic graphical models
Jack Kuipers
G. Moffa
David Heckerman
144
71
0
27 Feb 2014
Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs
Alain Hauser
Peter Buhlmann
CML
90
95
0
13 Mar 2013
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
David Heckerman
D. Geiger
D. M. Chickering
TPM
119
3,983
0
27 Feb 2013
Learning Gaussian Networks
D. Geiger
David Heckerman
TPM
81
500
0
27 Feb 2013
Data Analysis with Bayesian Networks: A Bootstrap Approach
N. Friedman
M. Goldszmidt
A. Wyner
TPM
89
377
0
23 Jan 2013
Advances in exact Bayesian structure discovery in Bayesian networks
Mikko Koivisto
TPM
73
91
0
27 Jun 2012
Bayesian structure learning using dynamic programming and MCMC
Daniel Eaton
Kevin P. Murphy
96
136
0
20 Jun 2012
Identifiability of Gaussian structural equation models with equal error variances
J. Peters
Peter Buhlmann
CML
196
339
0
11 May 2012
1