Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.09506
Cited By
Physics-informed neural networks (PINNs) for fluid mechanics: A review
20 May 2021
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Karniadakis
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics-informed neural networks (PINNs) for fluid mechanics: A review"
39 / 39 papers shown
Title
QCPINN: Quantum-Classical Physics-Informed Neural Networks for Solving PDEs
Afrah Farea
Saiful Khan
Mustafa Serdar Celebi
PINN
101
0
0
20 Mar 2025
Towards a Foundation Model for Physics-Informed Neural Networks: Multi-PDE Learning with Active Sampling
Keon Vin Park
PINN
AI4CE
78
0
0
11 Feb 2025
Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised Learning
Alex Finkelstein
Nikita Vladimirov
Moritz Zaiss
O. Perlman
53
2
0
10 Nov 2024
Metamizer: a versatile neural optimizer for fast and accurate physics simulations
Nils Wandel
Stefan Schulz
Reinhard Klein
PINN
AI4CE
75
1
0
10 Oct 2024
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
68
2
0
04 Oct 2024
SetPINNs: Set-based Physics-informed Neural Networks
Mayank Nagda
Phil Ostheimer
Thomas Specht
Frank Rhein
Fabian Jirasek
Stephan Mandt
Marius Kloft
Sophie Fellenz
PINN
3DPC
113
1
0
30 Sep 2024
Scientific Machine Learning Seismology
Tomohisa Okazaki
PINN
AI4CE
103
0
0
27 Sep 2024
Generating Physical Dynamics under Priors
Zihan Zhou
Xiaoxue Wang
Tianshu Yu
DiffM
AI4CE
89
0
0
01 Sep 2024
A Two-Stage Imaging Framework Combining CNN and Physics-Informed Neural Networks for Full-Inverse Tomography: A Case Study in Electrical Impedance Tomography (EIT)
Xu Yang
Yangming Zhang
Haofeng Chen
Gang Ma
Xiaojie Wang
49
0
0
25 Jul 2024
Regression Trees Know Calculus
Nathan Wycoff
47
0
0
22 May 2024
Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling
Wanghan Xu
Fenghua Ling
Wenlong Zhang
Tao Han
Hao Chen
Wanli Ouyang
Lei Bai
AI4CE
114
5
0
22 May 2024
Stochastic Inference of Plate Bending from Heterogeneous Data: Physics-informed Gaussian Processes via Kirchhoff-Love Theory
I. Kavrakov
Gledson Rodrigo Tondo
Guido Morgenthal
AI4CE
81
1
0
21 May 2024
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
138
280
0
20 Apr 2021
Physics-aware deep neural networks for surrogate modeling of turbulent natural convection
Didier Lucor
A. Agrawal
A. Sergent
PINN
AI4CE
31
16
0
05 Mar 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
76
508
0
09 Feb 2021
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
110
127
0
14 Dec 2020
Physics-Informed Neural Networks for Nonhomogeneous Material Identification in Elasticity Imaging
Enrui Zhang
Minglang Yin
George Karniadakis
30
64
0
02 Sep 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
111
896
0
28 Jul 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating a class of inverse problems for PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
35
263
0
29 Jun 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
45
172
0
29 Jun 2020
Deep learning of free boundary and Stefan problems
Sizhuang He
P. Perdikaris
102
81
0
04 Jun 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
213
768
0
13 Mar 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
158
520
0
11 Mar 2020
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
85
292
0
13 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
302
42,038
0
03 Dec 2019
Towards Physics-informed Deep Learning for Turbulent Flow Prediction
Rui Wang
K. Kashinath
M. Mustafa
A. Albert
Rose Yu
PINN
AI4CE
36
361
0
20 Nov 2019
Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
S. Goswami
C. Anitescu
S. Chakraborty
Timon Rabczuk
PINN
42
602
0
04 Jul 2019
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
Georgios Kissas
Yibo Yang
E. Hwuang
W. Witschey
John A. Detre
P. Perdikaris
AI4CE
107
368
0
13 May 2019
Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks
Dongkun Zhang
Ling Guo
George Karniadakis
AI4CE
58
212
0
03 May 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
70
860
0
18 Jan 2019
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yibo Yang
P. Perdikaris
AI4CE
PINN
89
356
0
09 Nov 2018
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
Dongkun Zhang
Lu Lu
Ling Guo
George Karniadakis
UQCV
100
405
0
21 Sep 2018
Deep Learning of Vortex Induced Vibrations
M. Raissi
Zhicheng Wang
M. Triantafyllou
George Karniadakis
AI4CE
43
373
0
26 Aug 2018
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
54
611
0
28 Nov 2017
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
68
912
0
28 Nov 2017
Numerical Gaussian Processes for Time-dependent and Non-linear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
53
267
0
29 Mar 2017
Machine Learning of Linear Differential Equations using Gaussian Processes
M. Raissi
George Karniadakis
64
544
0
10 Jan 2017
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
356
18,300
0
27 May 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.1K
149,474
0
22 Dec 2014
1