ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.09270
  4. Cited By
Do We Really Need to Learn Representations from In-domain Data for
  Outlier Detection?

Do We Really Need to Learn Representations from In-domain Data for Outlier Detection?

19 May 2021
Zhisheng Xiao
Qing Yan
Y. Amit
    OOD
    UQCV
ArXivPDFHTML

Papers citing "Do We Really Need to Learn Representations from In-domain Data for Outlier Detection?"

12 / 12 papers shown
Title
DOSE3 : Diffusion-based Out-of-distribution detection on SE(3) trajectories
DOSE3 : Diffusion-based Out-of-distribution detection on SE(3) trajectories
Hongzhe Cheng
Tianyou Zheng
Tianyi Zhang
Matthew Johnson-Roberson
Weiming Zhi
DiffM
52
0
0
23 Feb 2025
Out-of-Distribution Detection with a Single Unconditional Diffusion
  Model
Out-of-Distribution Detection with a Single Unconditional Diffusion Model
Alvin Heng
Alexandre H. Thiery
Harold Soh
48
1
0
20 May 2024
Normalizing Flows for Human Pose Anomaly Detection
Normalizing Flows for Human Pose Anomaly Detection
Or Hirschorn
S. Avidan
3DH
14
46
0
20 Nov 2022
Anomaly Detection via Multi-Scale Contrasted Memory
Anomaly Detection via Multi-Scale Contrasted Memory
Loic Jezequel
Ngoc-Son Vu
Jean Beaudet
A. Histace
27
0
0
16 Nov 2022
OOD-DiskANN: Efficient and Scalable Graph ANNS for Out-of-Distribution
  Queries
OOD-DiskANN: Efficient and Scalable Graph ANNS for Out-of-Distribution Queries
Shikhar Jaiswal
Ravishankar Krishnaswamy
Ankit Garg
H. Simhadri
Sheshansh Agrawal
19
23
0
22 Oct 2022
ADBench: Anomaly Detection Benchmark
ADBench: Anomaly Detection Benchmark
Songqiao Han
Xiyang Hu
Hailiang Huang
Mingqi Jiang
Yue Zhao
OOD
35
295
0
19 Jun 2022
ARCADE: Adversarially Regularized Convolutional Autoencoder for Network
  Anomaly Detection
ARCADE: Adversarially Regularized Convolutional Autoencoder for Network Anomaly Detection
W. T. Lunardi
Martin Andreoni Lopez
J. Giacalone
21
22
0
03 May 2022
No Shifted Augmentations (NSA): compact distributions for robust
  self-supervised Anomaly Detection
No Shifted Augmentations (NSA): compact distributions for robust self-supervised Anomaly Detection
Mohamed Yousef
Marcel R. Ackermann
Unmesh Kurup
Tom E. Bishop
OODD
OOD
34
3
0
19 Mar 2022
Data Invariants to Understand Unsupervised Out-of-Distribution Detection
Data Invariants to Understand Unsupervised Out-of-Distribution Detection
Lars Doorenbos
Raphael Sznitman
Pablo Márquez-Neila
OODD
27
6
0
26 Nov 2021
Hierarchical VAEs Know What They Don't Know
Hierarchical VAEs Know What They Don't Know
Jakob Drachmann Havtorn
J. Frellsen
Søren Hauberg
Lars Maaløe
DRL
30
71
0
16 Feb 2021
Improved Baselines with Momentum Contrastive Learning
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
267
3,369
0
09 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
273
5,660
0
05 Dec 2016
1