ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.06331
  4. Cited By
Informed Equation Learning

Informed Equation Learning

13 May 2021
M. Werner
Andrej Junginger
Philipp Hennig
Georg Martius
ArXivPDFHTML

Papers citing "Informed Equation Learning"

16 / 16 papers shown
Title
SymbolNet: Neural Symbolic Regression with Adaptive Dynamic Pruning for Compression
SymbolNet: Neural Symbolic Regression with Adaptive Dynamic Pruning for Compression
Ho Fung Tsoi
Vladimir Loncar
S. Dasu
Philip C. Harris
181
3
0
18 Jan 2024
Integration of Neural Network-Based Symbolic Regression in Deep Learning
  for Scientific Discovery
Integration of Neural Network-Based Symbolic Regression in Deep Learning for Scientific Discovery
Samuel Kim
Peter Y. Lu
Srijon Mukherjee
M. Gilbert
Li Jing
V. Ceperic
Marin Soljacic
60
164
0
10 Dec 2019
Deep Learning for Symbolic Mathematics
Deep Learning for Symbolic Mathematics
Guillaume Lample
François Charton
3DGS
102
411
0
02 Dec 2019
Analytical classical density functionals from an equation learning
  network
Analytical classical density functionals from an equation learning network
Shang-Chun Lin
Georg Martius
M. Oettel
26
35
0
28 Oct 2019
AI Feynman: a Physics-Inspired Method for Symbolic Regression
AI Feynman: a Physics-Inspired Method for Symbolic Regression
S. Udrescu
Max Tegmark
158
873
0
27 May 2019
Neural-Guided Symbolic Regression with Asymptotic Constraints
Neural-Guided Symbolic Regression with Asymptotic Constraints
Li Li
Minjie Fan
Rishabh Singh
Patrick F. Riley
10
13
0
23 Jan 2019
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep
  Network
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network
Zichao Long
Yiping Lu
Bin Dong
AI4CE
72
552
0
30 Nov 2018
Learning Equations for Extrapolation and Control
Learning Equations for Extrapolation and Control
Subham S. Sahoo
Christoph H. Lampert
Georg Martius
43
233
0
19 Jun 2018
Learning Sparse Neural Networks through $L_0$ Regularization
Learning Sparse Neural Networks through L0L_0L0​ Regularization
Christos Louizos
Max Welling
Diederik P. Kingma
425
1,144
0
04 Dec 2017
Grammar Variational Autoencoder
Grammar Variational Autoencoder
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
BDL
DRL
83
841
0
06 Mar 2017
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
186
2,530
0
02 Nov 2016
Extrapolation and learning equations
Extrapolation and learning equations
Georg Martius
Christoph H. Lampert
38
157
0
10 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
766
36,794
0
25 Aug 2016
Identity Mappings in Deep Residual Networks
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
354
10,182
0
16 Mar 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Learning to Discover Efficient Mathematical Identities
Learning to Discover Efficient Mathematical Identities
Wojciech Zaremba
Karol Kurach
Rob Fergus
88
54
0
06 Jun 2014
1