ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.04030
  4. Cited By
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty

A Bit More Bayesian: Domain-Invariant Learning with Uncertainty

9 May 2021
Zehao Xiao
Jiayi Shen
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
    BDL
    UQCV
    OOD
ArXivPDFHTML

Papers citing "A Bit More Bayesian: Domain-Invariant Learning with Uncertainty"

11 / 11 papers shown
Title
Uncertainty-Guided Self-Questioning and Answering for Video-Language Alignment
Uncertainty-Guided Self-Questioning and Answering for Video-Language Alignment
Jin Chen
Kaijing Ma
Haojian Huang
Jiayu Shen
Han Fang
Xianghao Zang
Chao Ban
79
2
0
17 Sep 2024
Towards Robust Uncertainty-Aware Incomplete Multi-View Classification
Towards Robust Uncertainty-Aware Incomplete Multi-View Classification
Mulin. Chen
Haojian Huang
Qiang Li
UQCV
28
1
0
10 Sep 2024
Causal Understanding For Video Question Answering
Causal Understanding For Video Question Answering
Bhanu Prakash Reddy Guda
Tanmay Kulkarni
Adithya Sampath
Swarnashree Mysore Sathyendra
CML
41
0
0
23 Jul 2024
Domain Generalization with Small Data
Domain Generalization with Small Data
Kecheng Chen
Elena Gal
Hong Yan
Haoliang Li
OOD
19
5
0
09 Feb 2024
Bayesian Domain Invariant Learning via Posterior Generalization of
  Parameter Distributions
Bayesian Domain Invariant Learning via Posterior Generalization of Parameter Distributions
Shiyu Shen
Bin Pan
Tianyang Shi
Tao Li
Zhenwei Shi
BDL
OOD
16
1
0
25 Oct 2023
Domain-Indexing Variational Bayes: Interpretable Domain Index for Domain
  Adaptation
Domain-Indexing Variational Bayes: Interpretable Domain Index for Domain Adaptation
Zihao Xu
Guang-Yuan Hao
Hao He
Hao Wang
30
18
0
06 Feb 2023
A General Framework for quantifying Aleatoric and Epistemic uncertainty
  in Graph Neural Networks
A General Framework for quantifying Aleatoric and Epistemic uncertainty in Graph Neural Networks
Sai Munikoti
D. Agarwal
Laya Das
Balasubramaniam Natarajan
BDL
UD
18
13
0
20 May 2022
Causality Inspired Representation Learning for Domain Generalization
Causality Inspired Representation Learning for Domain Generalization
Fangrui Lv
Jian Liang
Shuang Li
Bin Zang
Chi Harold Liu
Ziteng Wang
Di Liu
CML
OOD
25
160
0
27 Mar 2022
Hierarchical Variational Memory for Few-shot Learning Across Domains
Hierarchical Variational Memory for Few-shot Learning Across Domains
Yingjun Du
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
VLM
BDL
30
21
0
15 Dec 2021
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
900
0
02 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
281
11,677
0
09 Mar 2017
1