Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.14421
Cited By
What Are Bayesian Neural Network Posteriors Really Like?
29 April 2021
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What Are Bayesian Neural Network Posteriors Really Like?"
50 / 80 papers shown
Title
Entropy-Guided Sampling of Flat Modes in Discrete Spaces
Pinaki Mohanty
Riddhiman Bhattacharya
Ruqi Zhang
146
0
0
05 May 2025
FedBEns: One-Shot Federated Learning based on Bayesian Ensemble
Jacopo Talpini
Marco Savi
Giovanni Neglia
FedML
Presented at
ResearchTrend Connect | FedML
on
07 May 2025
76
0
0
19 Mar 2025
Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Moritz A. Zanger
Pascal R. van der Vaart
Wendelin Bohmer
M. Spaan
UQCV
BDL
149
0
0
14 Mar 2025
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Large Language Model Confidence Estimation via Black-Box Access
Tejaswini Pedapati
Amit Dhurandhar
Soumya Ghosh
Soham Dan
P. Sattigeri
89
3
0
21 Feb 2025
Student-t processes as infinite-width limits of posterior Bayesian neural networks
Francesco Caporali
Stefano Favaro
Dario Trevisan
BDL
179
0
0
06 Feb 2025
CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian Sampling
Kaiyuan Zhang
Siyuan Cheng
Guangyu Shen
Bruno Ribeiro
Shengwei An
Pin-Yu Chen
Xinming Zhang
Ninghui Li
102
1
0
28 Jan 2025
vMF-Contact: Uncertainty-aware Evidential Learning for Probabilistic Contact-grasp in Noisy Clutter
Yitian Shi
Edgar Welte
Maximilian Gilles
Rania Rayyes
32
3
0
06 Nov 2024
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
49
4
0
14 Oct 2024
Predicting Battery Capacity Fade Using Probabilistic Machine Learning Models With and Without Pre-Trained Priors
Michael J. Kenney
Katerina G. Malollari
Sergei V. Kalinin
M. Ziatdinov
BDL
36
0
0
08 Oct 2024
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
42
0
0
04 Oct 2024
Uncertainty-Guided Self-Questioning and Answering for Video-Language Alignment
Jin Chen
Kaijing Ma
Haojian Huang
Jiayu Shen
Han Fang
Xianghao Zang
Chao Ban
79
2
0
17 Sep 2024
Motion Forecasting via Model-Based Risk Minimization
Aron Distelzweig
Eitan Kosman
Andreas Look
Faris Janjoš
Denesh K. Manivannan
Abhinav Valada
34
3
0
16 Sep 2024
Towards Robust Uncertainty-Aware Incomplete Multi-View Classification
Mulin. Chen
Haojian Huang
Qiang Li
UQCV
28
1
0
10 Sep 2024
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
31
2
0
29 Aug 2024
Function-Space MCMC for Bayesian Wide Neural Networks
Lucia Pezzetti
Stefano Favaro
Stefano Peluchetti
BDL
133
0
0
26 Aug 2024
DutyTTE: Deciphering Uncertainty in Origin-Destination Travel Time Estimation
Xiaowei Mao
Yan Lin
S. Guo
Yubin Chen
Xingyu Xian
Haomin Wen
Qisen Xu
Youfang Lin
Huaiyu Wan
44
1
0
23 Aug 2024
Vulnerabilities in AI-generated Image Detection: The Challenge of Adversarial Attacks
Yunfeng Diao
Na Zhai
Changtao Miao
Xun Yang
Meng Wang
Xun Yang
Meng Wang
AAML
39
1
0
30 Jul 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
53
0
0
22 Jul 2024
Robust Classification by Coupling Data Mollification with Label Smoothing
Markus Heinonen
Ba-Hien Tran
Michael Kampffmeyer
Maurizio Filippone
73
0
0
03 Jun 2024
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
68
1
0
27 May 2024
Leveraging Active Subspaces to Capture Epistemic Model Uncertainty in Deep Generative Models for Molecular Design
A. N. M. N. Abeer
Sanket R. Jantre
Nathan M. Urban
Byung-Jun Yoon
49
1
0
30 Apr 2024
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
BDL
UQCV
43
5
0
04 Mar 2024
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
66
17
0
07 Feb 2024
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Philipp Reiser
Javier Enrique Aguilar
A. Guthke
Paul-Christian Bürkner
36
2
0
08 Dec 2023
On the Out-of-Distribution Coverage of Combining Split Conformal Prediction and Bayesian Deep Learning
Paul Scemama
Ariel Kapusta
40
0
0
21 Nov 2023
Learning Active Subspaces for Effective and Scalable Uncertainty Quantification in Deep Neural Networks
Sanket R. Jantre
Nathan M. Urban
Xiaoning Qian
Byung-Jun Yoon
BDL
UQCV
23
4
0
06 Sep 2023
FedBIAD: Communication-Efficient and Accuracy-Guaranteed Federated Learning with Bayesian Inference-Based Adaptive Dropout
Jingjing Xue
Min Liu
Sheng Sun
Yuwei Wang
Hui Jiang
Xue Jiang
21
7
0
14 Jul 2023
Law of Large Numbers for Bayesian two-layer Neural Network trained with Variational Inference
Arnaud Descours
Tom Huix
Arnaud Guillin
Manon Michel
Eric Moulines
Boris Nectoux
BDL
32
1
0
10 Jul 2023
Gibbs Sampling the Posterior of Neural Networks
Giovanni Piccioli
Emanuele Troiani
Lenka Zdeborová
41
2
0
05 Jun 2023
When are ensembles really effective?
Ryan Theisen
Hyunsuk Kim
Yaoqing Yang
Liam Hodgkinson
Michael W. Mahoney
FedML
UQCV
35
15
0
21 May 2023
Measuring and Mitigating Local Instability in Deep Neural Networks
Arghya Datta
Subhrangshu Nandi
Jingcheng Xu
Greg Ver Steeg
He Xie
Anoop Kumar
Aram Galstyan
20
3
0
18 May 2023
Neural State-Space Models: Empirical Evaluation of Uncertainty Quantification
Marco Forgione
Dario Piga
UQCV
24
2
0
13 Apr 2023
Bayesian Federated Inference for estimating Statistical Models based on Non-shared Multicenter Data sets
Marianne A Jonker
H. Pazira
Anthony C. C. Coolen
FedML
25
5
0
15 Feb 2023
Probabilistic Circuits That Know What They Don't Know
Fabrizio G. Ventola
Steven Braun
Zhongjie Yu
Martin Mundt
Kristian Kersting
UQCV
TPM
32
7
0
13 Feb 2023
Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples
Qizhang Li
Yiwen Guo
W. Zuo
Hao Chen
AAML
27
35
0
10 Feb 2023
Bayesian posterior approximation with stochastic ensembles
Oleksandr Balabanov
Bernhard Mehlig
H. Linander
BDL
UQCV
27
5
0
15 Dec 2022
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
35
21
0
15 Dec 2022
Are you using test log-likelihood correctly?
Sameer K. Deshpande
Soumya K. Ghosh
Tin D. Nguyen
Tamara Broderick
32
7
0
01 Dec 2022
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization
Sanae Lotfi
Marc Finzi
Sanyam Kapoor
Andres Potapczynski
Micah Goldblum
A. Wilson
BDL
MLT
AI4CE
29
51
0
24 Nov 2022
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
23
52
0
11 Nov 2022
Jump-Diffusion Langevin Dynamics for Multimodal Posterior Sampling
Jacopo Guidolin
Vyacheslav Kungurtsev
Ondvrej Kuvzelka
BDL
18
0
0
02 Nov 2022
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
21
6
0
31 Oct 2022
Sequential Learning Of Neural Networks for Prequential MDL
J. Bornschein
Yazhe Li
Marcus Hutter
AI4TS
27
6
0
14 Oct 2022
Machine learning in bioprocess development: From promise to practice
L. M. Helleckes
J. Hemmerich
W. Wiechert
E. Lieres
A. Grünberger
21
47
0
04 Oct 2022
Is one annotation enough? A data-centric image classification benchmark for noisy and ambiguous label estimation
Lars Schmarje
Vasco Grossmann
Claudius Zelenka
S. Dippel
R. Kiko
...
M. Pastell
J. Stracke
A. Valros
N. Volkmann
Reinahrd Koch
43
34
0
13 Jul 2022
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
23
5
0
22 Jun 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
27
28
0
17 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
45
6
0
15 Jun 2022
1
2
Next