ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.08894
  4. Cited By
The Intrinsic Dimension of Images and Its Impact on Learning

The Intrinsic Dimension of Images and Its Impact on Learning

18 April 2021
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
ArXivPDFHTML

Papers citing "The Intrinsic Dimension of Images and Its Impact on Learning"

47 / 47 papers shown
Title
Transformers for Learning on Noisy and Task-Level Manifolds: Approximation and Generalization Insights
Transformers for Learning on Noisy and Task-Level Manifolds: Approximation and Generalization Insights
Zhaiming Shen
Alex Havrilla
Rongjie Lai
A. Cloninger
Wenjing Liao
39
0
0
06 May 2025
EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling
EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling
Theodoros Kouzelis
Ioannis Kakogeorgiou
Spyros Gidaris
N. Komodakis
DRL
75
5
0
17 Feb 2025
Beyond Fixed Horizons: A Theoretical Framework for Adaptive Denoising Diffusions
Beyond Fixed Horizons: A Theoretical Framework for Adaptive Denoising Diffusions
Soren Christensen
C. Strauch
Lukas Trottner
DiffM
95
0
0
31 Jan 2025
The Geometry of Tokens in Internal Representations of Large Language Models
The Geometry of Tokens in Internal Representations of Large Language Models
Karthik Viswanathan
Yuri Gardinazzi
Giada Panerai
Alberto Cazzaniga
Matteo Biagetti
AIFin
88
4
0
17 Jan 2025
Adapting to Unknown Low-Dimensional Structures in Score-Based Diffusion Models
Adapting to Unknown Low-Dimensional Structures in Score-Based Diffusion Models
Gen Li
Yuling Yan
DiffM
44
18
0
03 Jan 2025
Unsupervised detection of semantic correlations in big data
Unsupervised detection of semantic correlations in big data
Santiago Acevedo
Alex Rodriguez
A. Laio
65
2
0
04 Nov 2024
Offline-to-online Reinforcement Learning for Image-based Grasping with Scarce Demonstrations
Offline-to-online Reinforcement Learning for Image-based Grasping with Scarce Demonstrations
Bryan Chan
Anson Leung
James Bergstra
OffRL
OnRL
52
0
0
19 Oct 2024
On the Relation Between Linear Diffusion and Power Iteration
On the Relation Between Linear Diffusion and Power Iteration
Dana Weitzner
M. Delbracio
P. Milanfar
Raja Giryes
DiffM
31
0
0
16 Oct 2024
Linear Convergence of Diffusion Models Under the Manifold Hypothesis
Linear Convergence of Diffusion Models Under the Manifold Hypothesis
Peter Potaptchik
Iskander Azangulov
George Deligiannidis
DiffM
41
5
0
11 Oct 2024
Geometric Signatures of Compositionality Across a Language Model's Lifetime
Geometric Signatures of Compositionality Across a Language Model's Lifetime
Jin Hwa Lee
Thomas Jiralerspong
Lei Yu
Yoshua Bengio
Emily Cheng
CoGe
82
0
0
02 Oct 2024
Blessing of Dimensionality for Approximating Sobolev Classes on Manifolds
Blessing of Dimensionality for Approximating Sobolev Classes on Manifolds
Hong Ye Tan
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
52
0
0
13 Aug 2024
Many Perception Tasks are Highly Redundant Functions of their Input Data
Many Perception Tasks are Highly Redundant Functions of their Input Data
Rahul Ramesh
Anthony Bisulco
Ronald W. DiTullio
Linran Wei
Vijay Balasubramanian
Kostas Daniilidis
Pratik Chaudhari
38
2
0
18 Jul 2024
Reasoning in Large Language Models: A Geometric Perspective
Reasoning in Large Language Models: A Geometric Perspective
Romain Cosentino
Sarath Shekkizhar
LRM
44
2
0
02 Jul 2024
Generative Topological Networks
Generative Topological Networks
Alona Levy-Jurgenson
Z. Yakhini
38
0
0
21 Jun 2024
Just How Flexible are Neural Networks in Practice?
Just How Flexible are Neural Networks in Practice?
Ravid Shwartz-Ziv
Micah Goldblum
Arpit Bansal
C. B. Bruss
Yann LeCun
Andrew Gordon Wilson
37
4
0
17 Jun 2024
Emergence of a High-Dimensional Abstraction Phase in Language Transformers
Emergence of a High-Dimensional Abstraction Phase in Language Transformers
Emily Cheng
Diego Doimo
Corentin Kervadec
Iuri Macocco
Jade Yu
A. Laio
Marco Baroni
109
11
0
24 May 2024
Generative adversarial learning with optimal input dimension and its
  adaptive generator architecture
Generative adversarial learning with optimal input dimension and its adaptive generator architecture
Zhiyao Tan
Ling Zhou
Huazhen Lin
GAN
28
0
0
06 May 2024
A Statistical Analysis of Wasserstein Autoencoders for Intrinsically
  Low-dimensional Data
A Statistical Analysis of Wasserstein Autoencoders for Intrinsically Low-dimensional Data
Saptarshi Chakraborty
Peter L. Bartlett
36
1
0
24 Feb 2024
LDReg: Local Dimensionality Regularized Self-Supervised Learning
LDReg: Local Dimensionality Regularized Self-Supervised Learning
Hanxun Huang
R. Campello
S. Erfani
Xingjun Ma
Michael E. Houle
James Bailey
28
5
0
19 Jan 2024
Neural Network Approximation for Pessimistic Offline Reinforcement
  Learning
Neural Network Approximation for Pessimistic Offline Reinforcement Learning
Di Wu
Yuling Jiao
Li Shen
Haizhao Yang
Xiliang Lu
OffRL
27
1
0
19 Dec 2023
Class Uncertainty: A Measure to Mitigate Class Imbalance
Class Uncertainty: A Measure to Mitigate Class Imbalance
Z. S. Baltaci
K. Oksuz
S. Kuzucu
K. Tezoren
B. K. Konar
A. Ozkan
Emre Akbas
Sinan Kalkan
79
2
0
23 Nov 2023
Bridging Information-Theoretic and Geometric Compression in Language
  Models
Bridging Information-Theoretic and Geometric Compression in Language Models
Emily Cheng
Corentin Kervadec
Marco Baroni
24
16
0
20 Oct 2023
AdaptNet: Policy Adaptation for Physics-Based Character Control
AdaptNet: Policy Adaptation for Physics-Based Character Control
Pei Xu
Kaixiang Xie
Sheldon Andrews
P. Kry
Michael Neff
Morgan McGuire
Ioannis Karamouzas
Victor Zordan
TTA
37
16
0
30 Sep 2023
Out-of-distribution detection using normalizing flows on the data manifold
Out-of-distribution detection using normalizing flows on the data manifold
S. Razavi
M. Mehmanchi
Reshad Hosseini
Mostafa Tavassolipour
OODD
42
0
0
26 Aug 2023
Quantifying lottery tickets under label noise: accuracy, calibration,
  and complexity
Quantifying lottery tickets under label noise: accuracy, calibration, and complexity
V. Arora
Daniele Irto
Sebastian Goldt
G. Sanguinetti
34
2
0
21 Jun 2023
Deep neural networks architectures from the perspective of manifold
  learning
Deep neural networks architectures from the perspective of manifold learning
German Magai
AAML
AI4CE
16
6
0
06 Jun 2023
Mathematical Challenges in Deep Learning
Mathematical Challenges in Deep Learning
V. Nia
Guojun Zhang
I. Kobyzev
Michael R. Metel
Xinlin Li
...
S. Hemati
M. Asgharian
Linglong Kong
Wulong Liu
Boxing Chen
AI4CE
VLM
35
1
0
24 Mar 2023
High Fidelity Image Synthesis With Deep VAEs In Latent Space
High Fidelity Image Synthesis With Deep VAEs In Latent Space
Troy Luhman
Eric Luhman
DRL
3DV
26
7
0
23 Mar 2023
Deep Nonparametric Estimation of Intrinsic Data Structures by Chart
  Autoencoders: Generalization Error and Robustness
Deep Nonparametric Estimation of Intrinsic Data Structures by Chart Autoencoders: Generalization Error and Robustness
Hao Liu
Alex Havrilla
Rongjie Lai
Wenjing Liao
34
6
0
17 Mar 2023
The Effect of Data Dimensionality on Neural Network Prunability
The Effect of Data Dimensionality on Neural Network Prunability
Zachary Ankner
Alex Renda
Gintare Karolina Dziugaite
Jonathan Frankle
Tian Jin
26
5
0
01 Dec 2022
Internal Representations of Vision Models Through the Lens of Frames on
  Data Manifolds
Internal Representations of Vision Models Through the Lens of Frames on Data Manifolds
Henry Kvinge
Grayson Jorgenson
Davis Brown
Charles Godfrey
Tegan H. Emerson
50
2
0
19 Nov 2022
Interpretable Dimensionality Reduction by Feature Preserving Manifold
  Approximation and Projection
Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
Yang Yang
Hongjian Sun
Jialei Gong
Di Yu
FAtt
26
2
0
17 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
20
6
0
02 Nov 2022
A new method for determining Wasserstein 1 optimal transport maps from
  Kantorovich potentials, with deep learning applications
A new method for determining Wasserstein 1 optimal transport maps from Kantorovich potentials, with deep learning applications
Tristan Milne
Étienne Bilocq
A. Nachman
OT
14
3
0
02 Nov 2022
Deep Double Descent via Smooth Interpolation
Deep Double Descent via Smooth Interpolation
Matteo Gamba
Erik Englesson
Marten Bjorkman
Hossein Azizpour
53
10
0
21 Sep 2022
Success of Uncertainty-Aware Deep Models Depends on Data Manifold
  Geometry
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
35
1
0
02 Aug 2022
Distance Learner: Incorporating Manifold Prior to Model Training
Distance Learner: Incorporating Manifold Prior to Model Training
Aditya Chetan
Nipun Kwatra
21
1
0
14 Jul 2022
Predicting is not Understanding: Recognizing and Addressing
  Underspecification in Machine Learning
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
30
29
0
06 Jul 2022
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
Piotr Tempczyk
Rafał Michaluk
Łukasz Garncarek
Przemysław Spurek
Jacek Tabor
Adam Goliñski
35
26
0
29 Jun 2022
Score-Based Generative Models Detect Manifolds
Score-Based Generative Models Detect Manifolds
Jakiw Pidstrigach
DiffM
24
70
0
02 Jun 2022
Subspace clustering in high-dimensions: Phase transitions &
  Statistical-to-Computational gap
Subspace clustering in high-dimensions: Phase transitions & Statistical-to-Computational gap
Luca Pesce
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
30
1
0
26 May 2022
Overparameterization Improves StyleGAN Inversion
Overparameterization Improves StyleGAN Inversion
Yohan Poirier-Ginter
Alexandre Lessard
Ryan Smith
Jean-François Lalonde
38
4
0
12 May 2022
Topology and geometry of data manifold in deep learning
Topology and geometry of data manifold in deep learning
German Magai
A. Ayzenberg
AAML
19
11
0
19 Apr 2022
Towards Empirical Sandwich Bounds on the Rate-Distortion Function
Towards Empirical Sandwich Bounds on the Rate-Distortion Function
Yibo Yang
Stephan Mandt
28
24
0
23 Nov 2021
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein
  Distance)
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)
Jan Stanczuk
Christian Etmann
L. Kreusser
Carola-Bibiane Schönlieb
GAN
16
48
0
02 Mar 2021
Disentangling Adversarial Robustness and Generalization
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
186
272
0
03 Dec 2018
Minimax Rates for Estimating the Dimension of a Manifold
Minimax Rates for Estimating the Dimension of a Manifold
Jisu Kim
Alessandro Rinaldo
Larry A. Wasserman
160
24
0
03 May 2016
1