ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.08803
  4. Cited By
Consistent Accelerated Inference via Confident Adaptive Transformers

Consistent Accelerated Inference via Confident Adaptive Transformers

18 April 2021
Tal Schuster
Adam Fisch
Tommi Jaakkola
Regina Barzilay
    AI4TS
ArXivPDFHTML

Papers citing "Consistent Accelerated Inference via Confident Adaptive Transformers"

24 / 24 papers shown
Title
Language Models Can Predict Their Own Behavior
Language Models Can Predict Their Own Behavior
Dhananjay Ashok
Jonathan May
ReLM
AI4TS
LRM
63
0
0
18 Feb 2025
Uncertainty Guarantees on Automated Precision Weeding using Conformal Prediction
Uncertainty Guarantees on Automated Precision Weeding using Conformal Prediction
P. Melki
Lionel Bombrun
Boubacar Diallo
Jérôme Dias
Jean-Pierre da Costa
43
0
0
13 Jan 2025
Relaxed Recursive Transformers: Effective Parameter Sharing with Layer-wise LoRA
Relaxed Recursive Transformers: Effective Parameter Sharing with Layer-wise LoRA
Sangmin Bae
Adam Fisch
Hrayr Harutyunyan
Ziwei Ji
Seungyeon Kim
Tal Schuster
KELM
84
5
0
28 Oct 2024
Presto! Distilling Steps and Layers for Accelerating Music Generation
Presto! Distilling Steps and Layers for Accelerating Music Generation
Zachary Novack
Ge Zhu
Jonah Casebeer
Julian McAuley
Taylor Berg-Kirkpatrick
Nicholas J. Bryan
45
5
0
07 Oct 2024
Investigating Recurrent Transformers with Dynamic Halt
Investigating Recurrent Transformers with Dynamic Halt
Jishnu Ray Chowdhury
Cornelia Caragea
39
1
0
01 Feb 2024
EE-LLM: Large-Scale Training and Inference of Early-Exit Large Language
  Models with 3D Parallelism
EE-LLM: Large-Scale Training and Inference of Early-Exit Large Language Models with 3D Parallelism
Yanxi Chen
Xuchen Pan
Yaliang Li
Bolin Ding
Jingren Zhou
LRM
41
31
0
08 Dec 2023
AutoMix: Automatically Mixing Language Models
AutoMix: Automatically Mixing Language Models
Pranjal Aggarwal
Aman Madaan
Ankit Anand
Srividya Pranavi Potharaju
Swaroop Mishra
...
Karthik Kappaganthu
Yiming Yang
Shyam Upadhyay
Manaal Faruqui
Mausam
42
17
0
19 Oct 2023
Robots That Ask For Help: Uncertainty Alignment for Large Language Model
  Planners
Robots That Ask For Help: Uncertainty Alignment for Large Language Model Planners
Allen Z. Ren
Anushri Dixit
Alexandra Bodrova
Sumeet Singh
Stephen Tu
...
Jacob Varley
Zhenjia Xu
Dorsa Sadigh
Andy Zeng
Anirudha Majumdar
LM&Ro
64
219
0
04 Jul 2023
F-PABEE: Flexible-patience-based Early Exiting for Single-label and
  Multi-label text Classification Tasks
F-PABEE: Flexible-patience-based Early Exiting for Single-label and Multi-label text Classification Tasks
Xiangxiang Gao
Wei-wei Zhu
Jiasheng Gao
Congrui Yin
VLM
26
12
0
21 May 2023
Let's Sample Step by Step: Adaptive-Consistency for Efficient Reasoning
  and Coding with LLMs
Let's Sample Step by Step: Adaptive-Consistency for Efficient Reasoning and Coding with LLMs
Pranjal Aggarwal
Aman Madaan
Yiming Yang
Mausam
LRM
30
36
0
19 May 2023
Full Stack Optimization of Transformer Inference: a Survey
Full Stack Optimization of Transformer Inference: a Survey
Sehoon Kim
Coleman Hooper
Thanakul Wattanawong
Minwoo Kang
Ruohan Yan
...
Qijing Huang
Kurt Keutzer
Michael W. Mahoney
Y. Shao
A. Gholami
MQ
36
101
0
27 Feb 2023
Adaptive Computation with Elastic Input Sequence
Adaptive Computation with Elastic Input Sequence
Fuzhao Xue
Valerii Likhosherstov
Anurag Arnab
N. Houlsby
Mostafa Dehghani
Yang You
31
18
0
30 Jan 2023
Fast Inference from Transformers via Speculative Decoding
Fast Inference from Transformers via Speculative Decoding
Yaniv Leviathan
Matan Kalman
Yossi Matias
LRM
44
619
0
30 Nov 2022
You Need Multiple Exiting: Dynamic Early Exiting for Accelerating
  Unified Vision Language Model
You Need Multiple Exiting: Dynamic Early Exiting for Accelerating Unified Vision Language Model
Sheng Tang
Yaqing Wang
Zhenglun Kong
Tianchi Zhang
Yao Li
Caiwen Ding
Yanzhi Wang
Yi Liang
Dongkuan Xu
30
31
0
21 Nov 2022
Distribution-Free Finite-Sample Guarantees and Split Conformal
  Prediction
Distribution-Free Finite-Sample Guarantees and Split Conformal Prediction
Roel Hulsman
24
5
0
26 Oct 2022
Efficiently Controlling Multiple Risks with Pareto Testing
Efficiently Controlling Multiple Risks with Pareto Testing
Bracha Laufer-Goldshtein
Adam Fisch
Regina Barzilay
Tommi Jaakkola
36
16
0
14 Oct 2022
Recommendation Systems with Distribution-Free Reliability Guarantees
Recommendation Systems with Distribution-Free Reliability Guarantees
Anastasios Nikolas Angelopoulos
K. Krauth
Stephen Bates
Yixin Wang
Michael I. Jordan
43
12
0
04 Jul 2022
Transformer Feed-Forward Layers Build Predictions by Promoting Concepts
  in the Vocabulary Space
Transformer Feed-Forward Layers Build Predictions by Promoting Concepts in the Vocabulary Space
Mor Geva
Avi Caciularu
Ke Wang
Yoav Goldberg
KELM
69
336
0
28 Mar 2022
Tomayto, Tomahto. Beyond Token-level Answer Equivalence for Question
  Answering Evaluation
Tomayto, Tomahto. Beyond Token-level Answer Equivalence for Question Answering Evaluation
Jannis Bulian
Christian Buck
Wojciech Gajewski
Benjamin Boerschinger
Tal Schuster
26
43
0
15 Feb 2022
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk
  Control
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control
Anastasios Nikolas Angelopoulos
Stephen Bates
Emmanuel J. Candès
Michael I. Jordan
Lihua Lei
102
125
0
03 Oct 2021
Few-shot Conformal Prediction with Auxiliary Tasks
Few-shot Conformal Prediction with Auxiliary Tasks
Adam Fisch
Tal Schuster
Tommi Jaakkola
Regina Barzilay
184
53
0
17 Feb 2021
Distribution-Free, Risk-Controlling Prediction Sets
Distribution-Free, Risk-Controlling Prediction Sets
Stephen Bates
Anastasios Nikolas Angelopoulos
Lihua Lei
Jitendra Malik
Michael I. Jordan
OOD
187
186
0
07 Jan 2021
Efficient Transformers: A Survey
Efficient Transformers: A Survey
Yi Tay
Mostafa Dehghani
Dara Bahri
Donald Metzler
VLM
109
1,102
0
14 Sep 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1