ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.08043
  4. Cited By
Data Generating Process to Evaluate Causal Discovery Techniques for Time
  Series Data

Data Generating Process to Evaluate Causal Discovery Techniques for Time Series Data

16 April 2021
A. Lawrence
Marcus Kaiser
Rui Sampaio
Maksim Sipos
    CML
    AI4TS
ArXivPDFHTML

Papers citing "Data Generating Process to Evaluate Causal Discovery Techniques for Time Series Data"

10 / 10 papers shown
Title
Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Rebecca Herman
Jonas Wahl
Urmi Ninad
Jakob Runge
52
0
0
21 Mar 2025
Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes
Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes
Georg Manten
Cecilia Casolo
E. Ferrucci
Søren Wengel Mogensen
C. Salvi
Niki Kilbertus
CML
BDL
44
8
0
28 Feb 2024
CausalTime: Realistically Generated Time-series for Benchmarking of
  Causal Discovery
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
Yuxiao Cheng
Ziqian Wang
Tingxiong Xiao
Qin Zhong
J. Suo
Kunlun He
AI4TS
CML
30
11
0
03 Oct 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
31
24
0
27 Mar 2023
GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network
GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network
Yang Sun
Yifan Xie
BDL
CML
31
1
0
28 Jan 2023
Boosting Synthetic Data Generation with Effective Nonlinear Causal
  Discovery
Boosting Synthetic Data Generation with Effective Nonlinear Causal Discovery
Martina Cinquini
F. Giannotti
Riccardo Guidotti
18
10
0
18 Jan 2023
CIPCaD-Bench: Continuous Industrial Process datasets for benchmarking
  Causal Discovery methods
CIPCaD-Bench: Continuous Industrial Process datasets for benchmarking Causal Discovery methods
Giovanni Menegozzo
Diego DallÁlba
Paolo Fiorini
20
7
0
02 Aug 2022
Unsuitability of NOTEARS for Causal Graph Discovery
Unsuitability of NOTEARS for Causal Graph Discovery
Marcus Kaiser
Maksim Sipos
CML
27
65
0
12 Apr 2021
Learning Sparse Nonparametric DAGs
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
CML
111
258
0
29 Sep 2019
Discovering Graphical Granger Causality Using the Truncating Lasso
  Penalty
Discovering Graphical Granger Causality Using the Truncating Lasso Penalty
Ali Shojaie
George Michailidis
CML
68
214
0
03 Jul 2010
1