Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.08043
Cited By
Data Generating Process to Evaluate Causal Discovery Techniques for Time Series Data
16 April 2021
A. Lawrence
Marcus Kaiser
Rui Sampaio
Maksim Sipos
CML
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data Generating Process to Evaluate Causal Discovery Techniques for Time Series Data"
8 / 8 papers shown
Title
Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Rebecca Herman
Jonas Wahl
Urmi Ninad
Jakob Runge
49
0
0
21 Mar 2025
Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes
Georg Manten
Cecilia Casolo
E. Ferrucci
Søren Wengel Mogensen
C. Salvi
Niki Kilbertus
CML
BDL
34
8
0
28 Feb 2024
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
26
24
0
27 Mar 2023
GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network
Yang Sun
Yifan Xie
BDL
CML
21
1
0
28 Jan 2023
Boosting Synthetic Data Generation with Effective Nonlinear Causal Discovery
Martina Cinquini
F. Giannotti
Riccardo Guidotti
11
10
0
18 Jan 2023
Unsuitability of NOTEARS for Causal Graph Discovery
Marcus Kaiser
Maksim Sipos
CML
17
65
0
12 Apr 2021
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
CML
103
258
0
29 Sep 2019
Discovering Graphical Granger Causality Using the Truncating Lasso Penalty
Ali Shojaie
George Michailidis
CML
68
214
0
03 Jul 2010
1