Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.06060
Cited By
v1
v2
v3 (latest)
Model Learning with Personalized Interpretability Estimation (ML-PIE)
13 April 2021
M. Virgolin
A. D. Lorenzo
Francesca Randone
Eric Medvet
M. Wahde
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Model Learning with Personalized Interpretability Estimation (ML-PIE)"
23 / 23 papers shown
Title
Limits of trust in medical AI
Joshua Hatherley
94
134
0
20 Mar 2025
Multi-Objective Learning to Predict Pareto Fronts Using Hypervolume Maximization
T. Deist
Monika Grewal
F. Dankers
Tanja Alderliesten
Peter A. N. Bosman
70
19
0
08 Feb 2021
Mining Feature Relationships in Data
Andrew Lensen
15
4
0
02 Feb 2021
GLocalX -- From Local to Global Explanations of Black Box AI Models
Mattia Setzu
Riccardo Guidotti
A. Monreale
Franco Turini
D. Pedreschi
F. Giannotti
92
120
0
19 Jan 2021
Evolutionary learning of interpretable decision trees
Leonardo Lucio Custode
Giovanni Iacca
OffRL
62
41
0
14 Dec 2020
On Explaining Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
79
88
0
21 Oct 2020
Learning a Formula of Interpretability to Learn Interpretable Formulas
M. Virgolin
A. D. Lorenzo
Eric Medvet
Francesca Randone
46
33
0
23 Apr 2020
Genetic Programming for Evolving a Front of Interpretable Models for Data Visualisation
Andrew Lensen
Bing Xue
Mengjie Zhang
19
43
0
27 Jan 2020
On Explaining Machine Learning Models by Evolving Crucial and Compact Features
M. Virgolin
Tanja Alderliesten
Peter A. N. Bosman
60
28
0
04 Jul 2019
Manipulating and Measuring Model Interpretability
Forough Poursabzi-Sangdeh
D. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna M. Wallach
99
701
0
21 Feb 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
148
3,979
0
06 Feb 2018
Morphology dictates a robot's ability to ground crowd-proposed language
Zahra Mahoor
Jack Felag
Josh Bongard
LM&Ro
35
7
0
16 Dec 2017
Interpretable Policies for Reinforcement Learning by Genetic Programming
D. Hein
Steffen Udluft
Thomas Runkler
OffRL
61
135
0
12 Dec 2017
Deep reinforcement learning from human preferences
Paul Christiano
Jan Leike
Tom B. Brown
Miljan Martic
Shane Legg
Dario Amodei
218
3,377
0
12 Jun 2017
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,564
0
31 Mar 2017
Active Learning Using Uncertainty Information
Yazhou Yang
Marco Loog
40
73
0
27 Feb 2017
Interpretable Two-level Boolean Rule Learning for Classification
Guolong Su
Dennis L. Wei
Kush R. Varshney
Dmitry Malioutov
59
52
0
18 Jun 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
183
3,708
0
10 Jun 2016
Fast methods for training Gaussian processes on large data sets
C. Moore
A. J. Chua
C. Berry
J. Gair
GP
49
41
0
05 Apr 2016
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
D. Madigan
FAtt
72
743
0
05 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
863
9,353
0
06 Jun 2015
Supersparse Linear Integer Models for Optimized Medical Scoring Systems
Berk Ustun
Cynthia Rudin
130
354
0
15 Feb 2015
Falling Rule Lists
Fulton Wang
Cynthia Rudin
66
258
0
21 Nov 2014
1