ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.06046
  4. Cited By
Which Hyperparameters to Optimise? An Investigation of Evolutionary
  Hyperparameter Optimisation in Graph Neural Network For Molecular Property
  Prediction
v1v2 (latest)

Which Hyperparameters to Optimise? An Investigation of Evolutionary Hyperparameter Optimisation in Graph Neural Network For Molecular Property Prediction

13 April 2021
Yingfang Yuan
Wenjun Wang
Wei Pang
ArXiv (abs)PDFHTML

Papers citing "Which Hyperparameters to Optimise? An Investigation of Evolutionary Hyperparameter Optimisation in Graph Neural Network For Molecular Property Prediction"

14 / 14 papers shown
Title
Structured Citation Trend Prediction Using Graph Neural Networks
Structured Citation Trend Prediction Using Graph Neural Networks
Daniel Cummings
Marcel Nassar
71
27
0
06 Apr 2021
A Novel Genetic Algorithm with Hierarchical Evaluation Strategy for
  Hyperparameter Optimisation of Graph Neural Networks
A Novel Genetic Algorithm with Hierarchical Evaluation Strategy for Hyperparameter Optimisation of Graph Neural Networks
Yingfang Yuan
Wenjun Wang
George Macleod Coghill
Wei Pang
52
15
0
22 Jan 2021
Warm Starting CMA-ES for Hyperparameter Optimization
Warm Starting CMA-ES for Hyperparameter Optimization
Masahiro Nomura
Shuhei Watanabe
Youhei Akimoto
Yoshihiko Ozaki
Masaki Onishi
72
42
0
13 Dec 2020
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
663
5,808
0
25 Jul 2019
Graph Convolutional Networks with EigenPooling
Graph Convolutional Networks with EigenPooling
Yao Ma
Suhang Wang
Charu C. Aggarwal
Jiliang Tang
GNN
181
334
0
30 Apr 2019
Analyzing Learned Molecular Representations for Property Prediction
Analyzing Learned Molecular Representations for Property Prediction
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
...
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
104
1,317
0
02 Apr 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaMLGNNAI4TSAI4CE
780
8,533
0
03 Jan 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
243
7,653
0
01 Oct 2018
Adaptive Graph Convolutional Neural Networks
Adaptive Graph Convolutional Neural Networks
Ruoyu Li
Sheng Wang
Feiyun Zhu
Junzhou Huang
GNN
130
757
0
10 Jan 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
337
1,827
0
02 Mar 2017
The CMA Evolution Strategy: A Tutorial
The CMA Evolution Strategy: A Tutorial
N. Hansen
74
1,374
0
04 Apr 2016
Convolutional Networks on Graphs for Learning Molecular Fingerprints
Convolutional Networks on Graphs for Learning Molecular Fingerprints
David Duvenaud
D. Maclaurin
J. Aguilera-Iparraguirre
Rafael Gómez-Bombarelli
Timothy D. Hirzel
Alán Aspuru-Guzik
Ryan P. Adams
GNN
223
3,352
0
30 Sep 2015
Deep Convolutional Networks on Graph-Structured Data
Deep Convolutional Networks on Graph-Structured Data
Mikael Henaff
Joan Bruna
Yann LeCun
GNN
157
1,587
0
16 Jun 2015
Non-stochastic Best Arm Identification and Hyperparameter Optimization
Non-stochastic Best Arm Identification and Hyperparameter Optimization
Kevin Jamieson
Ameet Talwalkar
208
580
0
27 Feb 2015
1