Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.04543
Cited By
Understanding Event-Generation Networks via Uncertainties
9 April 2021
Marco Bellagente
Manuel Haussmann
Michel Luchmann
Tilman Plehn
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Event-Generation Networks via Uncertainties"
10 / 10 papers shown
Title
Generative Unfolding with Distribution Mapping
A. Butter
S. Diefenbacher
Nathan Huetsch
Vinicius Mikuni
Benjamin Nachman
Sofia Palacios Schweitzer
Tilman Plehn
DiffM
41
1
0
04 Nov 2024
FAIR Universe HiggsML Uncertainty Challenge Competition
W. Bhimji
P. Calafiura
Ragansu Chakkappai
Yuan-Tang Chou
S. Diefenbacher
...
D. Rousseau
Benjamin Sluijter
Benjamin Thorne
Ihsan Ullah
Yulei Zhang
39
2
0
03 Oct 2024
Unifying Simulation and Inference with Normalizing Flows
Haoxing Du
Claudius Krause
Vinicius Mikuni
Benjamin Nachman
Ian Pang
David Shih
42
3
0
29 Apr 2024
Bias and Priors in Machine Learning Calibrations for High Energy Physics
Rikab Gambhir
Benjamin Nachman
Jesse Thaler
AI4CE
30
7
0
10 May 2022
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
42
113
0
07 Dec 2021
Optimising simulations for diphoton production at hadron colliders using amplitude neural networks
Joseph Aylett-Bullock
S. Badger
Ryan Moodie
13
22
0
17 Jun 2021
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
AI4CE
34
81
0
09 Jun 2021
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDL
GAN
DRL
DiffM
10
27
0
01 Jun 2021
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
27
178
0
02 Feb 2021
Towards a Computer Vision Particle Flow
F. Bello
S. Ganguly
Eilam Gross
Marumi Kado
M. Pitt
Lorenzo Santi
Jonathan Shlomi
94
49
0
19 Mar 2020
1