ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.02705
  4. Cited By
deepregression: a Flexible Neural Network Framework for Semi-Structured
  Deep Distributional Regression

deepregression: a Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression

6 April 2021
David Rügamer
Chris Kolb
Cornelius Fritz
Florian Pfisterer
Philipp Kopper
B. Bischl
Ruolin Shen
Christina Bukas
Lisa Barros de Andrade e Sousa
Dominik Thalmeier
Philipp F. M. Baumann
Lucas Kook
Nadja Klein
Christian L. Müller
    BDL
ArXivPDFHTML

Papers citing "deepregression: a Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression"

13 / 13 papers shown
Title
Kernel Density Machines
Kernel Density Machines
Damir Filipović
P. Schneider
36
0
0
30 Apr 2025
Scalable Higher-Order Tensor Product Spline Models
Scalable Higher-Order Tensor Product Spline Models
David Rügamer
25
2
0
02 Feb 2024
A New PHO-rmula for Improved Performance of Semi-Structured Networks
A New PHO-rmula for Improved Performance of Semi-Structured Networks
David Rügamer
23
10
0
01 Jun 2023
mixdistreg: An R Package for Fitting Mixture of Experts Distributional
  Regression with Adaptive First-order Methods
mixdistreg: An R Package for Fitting Mixture of Experts Distributional Regression with Adaptive First-order Methods
David Rügamer
27
0
0
04 Feb 2023
Estimating Conditional Distributions with Neural Networks using R
  package deeptrafo
Estimating Conditional Distributions with Neural Networks using R package deeptrafo
Lucas Kook
Philipp F. M. Baumann
Oliver Durr
Beate Sick
David Rügamer
22
6
0
24 Nov 2022
Mixture of Experts Distributional Regression: Implementation Using
  Robust Estimation with Adaptive First-order Methods
Mixture of Experts Distributional Regression: Implementation Using Robust Estimation with Adaptive First-order Methods
David Rügamer
Florian Pfisterer
Bernd Bischl
Bettina Grün
12
3
0
17 Nov 2022
Uncertainty-aware predictive modeling for fair data-driven decisions
Uncertainty-aware predictive modeling for fair data-driven decisions
Patrick Kaiser
Christoph Kern
David Rügamer
FaML
11
5
0
04 Nov 2022
A review of predictive uncertainty estimation with machine learning
A review of predictive uncertainty estimation with machine learning
Hristos Tyralis
Georgia Papacharalampous
UD
UQCV
51
43
0
17 Sep 2022
Additive Higher-Order Factorization Machines
Additive Higher-Order Factorization Machines
David Rügamer
12
3
0
28 May 2022
DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex
  Hazard Structures in Survival Analysis
DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex Hazard Structures in Survival Analysis
Philipp Kopper
S. Wiegrebe
Bernd Bischl
Andreas Bender
David Rügamer
22
18
0
12 Feb 2022
Probabilistic Time Series Forecasts with Autoregressive Transformation
  Models
Probabilistic Time Series Forecasts with Autoregressive Transformation Models
David Rügamer
Philipp F. M. Baumann
Thomas Kneib
Torsten Hothorn
AI4TS
48
12
0
15 Oct 2021
M5 Competition Uncertainty: Overdispersion, distributional forecasting,
  GAMLSS and beyond
M5 Competition Uncertainty: Overdispersion, distributional forecasting, GAMLSS and beyond
F. Ziel
17
14
0
14 Jul 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
1