ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.16265
  4. Cited By
Is segmentation uncertainty useful?

Is segmentation uncertainty useful?

30 March 2021
Steffen Czolbe
K. Arnavaz
Oswin Krause
Aasa Feragen
    UQCV
ArXivPDFHTML

Papers citing "Is segmentation uncertainty useful?"

25 / 25 papers shown
Title
Generalizable Pancreas Segmentation via a Dual Self-Supervised Learning Framework
Generalizable Pancreas Segmentation via a Dual Self-Supervised Learning Framework
Jun Li
Hongzhang Zhu
Tao Chen
Xiaohua Qian
40
4
0
12 May 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
91
1
0
25 Nov 2024
Arctique: An artificial histopathological dataset unifying realism and
  controllability for uncertainty quantification
Arctique: An artificial histopathological dataset unifying realism and controllability for uncertainty quantification
Jannik Franzen
Claudia Winklmayr
Vanessa Emanuela Guarino
Christoph Karg
Xiaoyan Yu
Nora Koreuber
Jan P. Albrecht
Philip Bischoff
Dagmar Kainmueller
43
0
0
11 Nov 2024
Segmentation by registration-enabled SAM prompt engineering using five
  reference images
Segmentation by registration-enabled SAM prompt engineering using five reference images
Yaxi Chen
Aleksandra Ivanova
Shaheer U. Saeed
R. Hargunani
Jie Huang
Chaozong Liu
Yipeng Hu
MedIm
42
2
0
25 Jul 2024
Conformal Semantic Image Segmentation: Post-hoc Quantification of
  Predictive Uncertainty
Conformal Semantic Image Segmentation: Post-hoc Quantification of Predictive Uncertainty
Luca Mossina
Joseba Dalmau
Léo Andéol
UQCV
40
12
0
16 Apr 2024
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications
  to Cardiac MRI Segmentation
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
BDL
UQCV
43
5
0
04 Mar 2024
Weakly supervised localisation of prostate cancer using reinforcement
  learning for bi-parametric MR images
Weakly supervised localisation of prostate cancer using reinforcement learning for bi-parametric MR images
Martynas Pocius
Wen Yan
D. Barratt
M. Emberton
Matthew J. Clarkson
Yipeng Hu
Shaheer U. Saeed
32
0
0
21 Feb 2024
Tyche: Stochastic In-Context Learning for Medical Image Segmentation
Tyche: Stochastic In-Context Learning for Medical Image Segmentation
Marianne Rakic
Hallee E. Wong
Jose Javier Gonzalez Ortiz
Beth Cimini
John Guttag
Adrian V. Dalca
36
11
0
24 Jan 2024
ValUES: A Framework for Systematic Validation of Uncertainty Estimation
  in Semantic Segmentation
ValUES: A Framework for Systematic Validation of Uncertainty Estimation in Semantic Segmentation
Kim-Celine Kahl
Carsten T. Lüth
M. Zenk
Klaus Maier-Hein
Paul F. Jaeger
UQCV
30
16
0
16 Jan 2024
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
S. Chatterjee
Franziska Gaidzik
Alessandro Sciarra
Hendrik Mattern
G. Janiga
Oliver Speck
Andreas Nürnberger
S. Pathiraja
49
0
0
25 Dec 2023
A review of uncertainty quantification in medical image analysis:
  probabilistic and non-probabilistic methods
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
41
20
0
09 Oct 2023
Unsupervised bias discovery in medical image segmentation
Unsupervised bias discovery in medical image segmentation
Nicolás Gaggion
Rodrigo Echeveste
Lucas Mansilla
Diego H. Milone
Enzo Ferrante
25
1
0
01 Sep 2023
Boundary-RL: Reinforcement Learning for Weakly-Supervised Prostate
  Segmentation in TRUS Images
Boundary-RL: Reinforcement Learning for Weakly-Supervised Prostate Segmentation in TRUS Images
Wei Yi
V. Stavrinides
Zachary Michael Cieman Baum
Qianye Yang
D. Barratt
Matthew J. Clarkson
Yipeng Hu
Shaheer U. Saeed
22
3
0
22 Aug 2023
That Label's Got Style: Handling Label Style Bias for Uncertain Image
  Segmentation
That Label's Got Style: Handling Label Style Bias for Uncertain Image Segmentation
Kilian Zepf
Eike Petersen
J. Frellsen
Aasa Feragen
11
7
0
28 Mar 2023
Active learning using adaptable task-based prioritisation
Active learning using adaptable task-based prioritisation
Shaheer U. Saeed
João Ramalhinho
Mark A. Pinnock
Ziyi Shen
Yunguan Fu
...
D. Barratt
Stephen P. Pereira
Brian R. Davidson
Matthew J. Clarkson
Yipeng Hu
13
4
0
03 Dec 2022
Test-Time Mixup Augmentation for Data and Class-Specific Uncertainty
  Estimation in Deep Learning Image Classification
Test-Time Mixup Augmentation for Data and Class-Specific Uncertainty Estimation in Deep Learning Image Classification
Han S. Lee
Haeil Lee
H. Hong
Junmo Kim
UQCV
25
0
0
01 Dec 2022
PatchRefineNet: Improving Binary Segmentation by Incorporating Signals
  from Optimal Patch-wise Binarization
PatchRefineNet: Improving Binary Segmentation by Incorporating Signals from Optimal Patch-wise Binarization
S. Nagendra
Chaopeng Shen
Daniel Kifer
MQ
38
8
0
12 Nov 2022
Quantifying U-Net Uncertainty in Multi-Parametric MRI-based Glioma
  Segmentation by Spherical Image Projection
Quantifying U-Net Uncertainty in Multi-Parametric MRI-based Glioma Segmentation by Spherical Image Projection
Zhenyu Yang
Kyle J. Lafata
E. Vaios
Zongsheng Hu
Trey C Mullikin
F. Yin
Cong Wang
29
11
0
12 Oct 2022
Uncertainty Estimation for 3D Dense Prediction via Cross-Point
  Embeddings
Uncertainty Estimation for 3D Dense Prediction via Cross-Point Embeddings
Kaiwen Cai
Chris Xiaoxuan Lu
Xiaowei Huang
3DPC
37
2
0
29 Sep 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
29
0
0
27 Jun 2022
Maximum Entropy on Erroneous Predictions (MEEP): Improving model
  calibration for medical image segmentation
Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical image segmentation
Agostina J. Larrazabal
Cesar E. Martínez
Jose Dolz
Enzo Ferrante
19
15
0
22 Dec 2021
Deep Quantile Regression for Uncertainty Estimation in Unsupervised and
  Supervised Lesion Detection
Deep Quantile Regression for Uncertainty Estimation in Unsupervised and Supervised Lesion Detection
H. Akrami
Anand A. Joshi
Sergul Aydore
Richard M. Leahy
UQCV
39
4
0
20 Sep 2021
Effect of the output activation function on the probabilities and errors
  in medical image segmentation
Effect of the output activation function on the probabilities and errors in medical image segmentation
Lars Nieradzik
G. Scheuermann
D. Saur
Christina Gillmann
SSeg
MedIm
UQCV
35
6
0
02 Sep 2021
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
S. Popescu
D. Sharp
James H. Cole
Ben Glocker
25
5
0
28 Oct 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1