Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.15685
Cited By
Adaptive Boosting for Domain Adaptation: Towards Robust Predictions in Scene Segmentation
29 March 2021
Zhedong Zheng
Yi Yang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adaptive Boosting for Domain Adaptation: Towards Robust Predictions in Scene Segmentation"
12 / 12 papers shown
Title
SegDA: Maximum Separable Segment Mask with Pseudo Labels for Domain Adaptive Semantic Segmentation
Anant Khandelwal
26
1
0
10 Aug 2023
Hard-aware Instance Adaptive Self-training for Unsupervised Cross-domain Semantic Segmentation
Chuanglu Zhu
Kebin Liu
Wenqi Tang
Ke Mei
Jiaqi Zou
Tiejun Huang
57
1
0
14 Feb 2023
MAPS: A Noise-Robust Progressive Learning Approach for Source-Free Domain Adaptive Keypoint Detection
Yuhe Ding
Jian Liang
Bo Jiang
A. Zheng
Ran He
3DPC
34
8
0
09 Feb 2023
Style-Hallucinated Dual Consistency Learning: A Unified Framework for Visual Domain Generalization
Yuyang Zhao
Zhun Zhong
Na Zhao
N. Sebe
G. Lee
37
29
0
18 Dec 2022
PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain Adaptative Semantic Segmentation
Mu Chen
Zhedong Zheng
Yi Yang
Tat-Seng Chua
53
53
0
14 Nov 2022
Source-Free Open Compound Domain Adaptation in Semantic Segmentation
Yuyang Zhao
Zhun Zhong
Zhiming Luo
G. Lee
N. Sebe
TTA
40
88
0
07 Jun 2021
Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation
Zhonghao Wang
Mo Yu
Yunchao Wei
Rogerio Feris
Jinjun Xiong
Wen-mei W. Hwu
Thomas S. Huang
Humphrey Shi
OOD
189
232
0
18 Mar 2020
Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation
Zhedong Zheng
Yi Yang
NoLa
191
497
0
08 Mar 2020
Confidence Regularized Self-Training
Yang Zou
Zhiding Yu
Xiaofeng Liu
B. Kumar
Jinsong Wang
233
790
0
26 Aug 2019
Fully Convolutional Adaptation Networks for Semantic Segmentation
Yiheng Zhang
Zhaofan Qiu
Ting Yao
Dong Liu
Tao Mei
SSeg
OOD
165
350
0
23 Apr 2018
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Antti Tarvainen
Harri Valpola
OOD
MoMe
273
1,275
0
06 Mar 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1