ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.14291
  4. Cited By
Vulnerability Due to Training Order in Split Learning

Vulnerability Due to Training Order in Split Learning

26 March 2021
Harshit Madaan
M. Gawali
V. Kulkarni
Aniruddha Pant
    FedML
ArXivPDFHTML

Papers citing "Vulnerability Due to Training Order in Split Learning"

19 / 19 papers shown
Title
Comparison of Privacy-Preserving Distributed Deep Learning Methods in
  Healthcare
Comparison of Privacy-Preserving Distributed Deep Learning Methods in Healthcare
M. Gawali
S. ArvindC.
Shriya Suryavanshi
Harshit Madaan
A. Gaikwad
KN BhanuPrakash
V. Kulkarni
Aniruddha Pant
FedML
49
35
0
23 Dec 2020
Automated Pancreas Segmentation Using Multi-institutional Collaborative
  Deep Learning
Automated Pancreas Segmentation Using Multi-institutional Collaborative Deep Learning
Pochuan Wang
Chen Shen
H. Roth
Dong Yang
Daguang Xu
...
Po-Ting Chen
Kao-Lang Liu
Wei-Chih Liao
Weichung Wang
K. Mori
FedML
OOD
38
25
0
28 Sep 2020
SplitFed: When Federated Learning Meets Split Learning
SplitFed: When Federated Learning Meets Split Learning
Chandra Thapa
Pathum Chamikara Mahawaga Arachchige
S. Çamtepe
Lichao Sun
FedML
73
573
0
25 Apr 2020
Can We Use Split Learning on 1D CNN Models for Privacy Preserving
  Training?
Can We Use Split Learning on 1D CNN Models for Privacy Preserving Training?
Sharif Abuadbba
Kyuyeon Kim
Minki Kim
Chandra Thapa
S. Çamtepe
Yansong Gao
Hyoungshick Kim
Surya Nepal
FedML
31
123
0
16 Mar 2020
Split Learning for collaborative deep learning in healthcare
Split Learning for collaborative deep learning in healthcare
M. Poirot
Praneeth Vepakomma
Ken Chang
Jayashree Kalpathy-Cramer
Rajiv Gupta
Ramesh Raskar
FedML
OOD
48
135
0
27 Dec 2019
Privacy-preserving Federated Brain Tumour Segmentation
Privacy-preserving Federated Brain Tumour Segmentation
Wenqi Li
Fausto Milletarì
Daguang Xu
Nicola Rieke
Jonny Hancox
...
Maximilian Baust
Yan Cheng
Sébastien Ourselin
M. Jorge Cardoso
Andrew Feng
FedML
59
475
0
02 Oct 2019
Detailed comparison of communication efficiency of split learning and
  federated learning
Detailed comparison of communication efficiency of split learning and federated learning
Abhishek Singh
Praneeth Vepakomma
O. Gupta
Ramesh Raskar
FedML
43
188
0
18 Sep 2019
PadChest: A large chest x-ray image dataset with multi-label annotated
  reports
PadChest: A large chest x-ray image dataset with multi-label annotated reports
A. Bustos
A. Pertusa
J. M. Salinas
M. Iglesia-Vayá
LM&MA
56
607
0
22 Jan 2019
MIMIC-CXR-JPG, a large publicly available database of labeled chest
  radiographs
MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs
Alistair E. W. Johnson
Tom Pollard
Nathaniel R. Greenbaum
M. Lungren
Chih-ying Deng
Yifan Peng
Zhiyong Lu
R. Mark
Seth Berkowitz
Steven Horng
MedIm
75
803
0
21 Jan 2019
No Peek: A Survey of private distributed deep learning
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
47
100
0
08 Dec 2018
Split learning for health: Distributed deep learning without sharing raw
  patient data
Split learning for health: Distributed deep learning without sharing raw patient data
Praneeth Vepakomma
O. Gupta
Tristan Swedish
Ramesh Raskar
FedML
83
694
0
03 Dec 2018
A generic framework for privacy preserving deep learning
A generic framework for privacy preserving deep learning
Wenbo Guo
Yunzhe Tao
Morten Dahl
Sui Huang
Masashi Sugiyama
Daniel Rueckert
Lin Lin
FedML
68
435
0
09 Nov 2018
Distributed learning of deep neural network over multiple agents
Distributed learning of deep neural network over multiple agents
O. Gupta
Ramesh Raskar
FedML
OOD
44
602
0
14 Oct 2018
Multi-Institutional Deep Learning Modeling Without Sharing Patient Data:
  A Feasibility Study on Brain Tumor Segmentation
Multi-Institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation
Micah J. Sheller
G. A. Reina
Brandon Edwards
Jason Martin
Spyridon Bakas
FedML
47
458
0
10 Oct 2018
Deep Learning Scaling is Predictable, Empirically
Deep Learning Scaling is Predictable, Empirically
Joel Hestness
Sharan Narang
Newsha Ardalani
G. Diamos
Heewoo Jun
Hassan Kianinejad
Md. Mostofa Ali Patwary
Yang Yang
Yanqi Zhou
83
728
0
01 Dec 2017
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
96
1,886
0
08 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
631
36,599
0
25 Aug 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
234
17,328
0
17 Feb 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
840
149,474
0
22 Dec 2014
1