Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.12828
Cited By
Learning to Optimize: A Primer and A Benchmark
23 March 2021
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Optimize: A Primer and A Benchmark"
47 / 47 papers shown
Title
Optimization Problem Solving Can Transition to Evolutionary Agentic Workflows
Wenhao Li
Bo Jin
Mingyi Hong
Changhong Lu
Xiangfeng Wang
48
0
0
07 May 2025
Unveiling and Mitigating Adversarial Vulnerabilities in Iterative Optimizers
Elad Sofer
Tomer Shaked
Caroline Chaux
Nir Shlezinger
AAML
45
0
0
26 Apr 2025
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
56
0
0
21 Feb 2025
UNEM: UNrolled Generalized EM for Transductive Few-Shot Learning
Long Zhou
Fereshteh Shakeri
Aymen Sadraoui
Mounir Kaaniche
J. Pesquet
Ismail Ben Ayed
VLM
84
0
0
21 Dec 2024
On the Learn-to-Optimize Capabilities of Transformers in In-Context Sparse Recovery
Renpu Liu
Ruida Zhou
Cong Shen
Jing Yang
25
0
0
17 Oct 2024
Self-Supervised Learning of Iterative Solvers for Constrained Optimization
Lukas Luken
Sergio Lucia
29
0
0
12 Sep 2024
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Lazar Atanackovic
Xi Zhang
Brandon Amos
Mathieu Blanchette
Leo J. Lee
Yoshua Bengio
Alexander Tong
Kirill Neklyudov
33
5
0
26 Aug 2024
Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning
Frederik Hoppe
C. M. Verdun
Hannah Laus
Felix Krahmer
Holger Rauhut
UQCV
22
1
0
18 Jul 2024
Schur's Positive-Definite Network: Deep Learning in the SPD cone with structure
Can Pouliquen
Mathurin Massias
Titouan Vayer
38
0
0
13 Jun 2024
From Learning to Optimize to Learning Optimization Algorithms
Camille Castera
Peter Ochs
59
1
0
28 May 2024
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
43
6
0
07 May 2024
ILILT: Implicit Learning of Inverse Lithography Technologies
Haoyu Yang
Haoxing Ren
33
3
0
06 May 2024
From Large Language Models and Optimization to Decision Optimization CoPilot: A Research Manifesto
S. Wasserkrug
Léonard Boussioux
D. Hertog
F. Mirzazadeh
Ilker Birbil
Jannis Kurtz
Donato Maragno
LLMAG
32
3
0
26 Feb 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
Improving physics-informed neural networks with meta-learned optimization
Alexander Bihlo
PINN
31
18
0
13 Mar 2023
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning
Adam X. Yang
Laurence Aitchison
Henry B. Moss
29
4
0
22 Feb 2023
SF-SGL: Solver-Free Spectral Graph Learning from Linear Measurements
Ying Zhang
Zhiqiang Zhao
Zhuo Feng
38
2
0
09 Feb 2023
Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain
K. Choromanski
Kumar Avinava Dubey
Sumeet Singh
Vikas Sindhwani
Tingnan Zhang
Jie Tan
OffRL
31
9
0
02 Feb 2023
A Nonstochastic Control Approach to Optimization
Xinyi Chen
Elad Hazan
47
5
0
19 Jan 2023
Learning-Assisted Algorithm Unrolling for Online Optimization with Budget Constraints
Jianyi Yang
Shaolei Ren
18
2
0
03 Dec 2022
Solving 3D Radar Imaging Inverse Problems with a Multi-cognition Task-oriented Framework
Xu Zhan
Xiaoling Zhang
Mou Wang
Jun Shi
Shunjun Wei
Tianjiao Zeng
21
1
0
28 Nov 2022
Optimization for Amortized Inverse Problems
Tianci Liu
Tong Yang
Quan Zhang
Qi Lei
26
4
0
25 Oct 2022
Learning Variational Models with Unrolling and Bilevel Optimization
Christoph Brauer
Niklas Breustedt
T. Wolff
D. Lorenz
SSL
29
3
0
26 Sep 2022
On Representing Linear Programs by Graph Neural Networks
Ziang Chen
Jialin Liu
Xinshang Wang
Jian Lu
W. Yin
AI4CE
57
31
0
25 Sep 2022
Estimating a potential without the agony of the partition function
E. Haber
Moshe Eliasof
L. Tenorio
25
2
0
19 Aug 2022
Self-Supervised Primal-Dual Learning for Constrained Optimization
Seonho Park
Pascal Van Hentenryck
25
46
0
18 Aug 2022
Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions
Sheheryar Mehmood
Peter Ochs
33
3
0
05 Aug 2022
Landscape Learning for Neural Network Inversion
Ruoshi Liu
Chen-Guang Mao
Purva Tendulkar
Hongya Wang
Carl Vondrick
32
8
0
17 Jun 2022
Optimization-Derived Learning with Essential Convergence Analysis of Training and Hyper-training
Risheng Liu
Xuan Liu
Shangzhi Zeng
Jin Zhang
Yixuan Zhang
35
6
0
16 Jun 2022
Automated Dynamic Algorithm Configuration
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Frank Hutter
27
36
0
27 May 2022
Model-Based Deep Learning: On the Intersection of Deep Learning and Optimization
Nir Shlezinger
Yonina C. Eldar
Stephen P. Boyd
22
130
0
05 May 2022
Explainable AI via Learning to Optimize
Howard Heaton
Samy Wu Fung
24
14
0
29 Apr 2022
Expert-Calibrated Learning for Online Optimization with Switching Costs
Pengfei Li
Jianyi Yang
Shaolei Ren
24
11
0
18 Apr 2022
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Wenqing Zheng
Tianlong Chen
Ting-Kuei Hu
Zhangyang Wang
37
18
0
13 Mar 2022
Teaching Networks to Solve Optimization Problems
Xinran Liu
Yuzhe Lu
Ali Abbasi
Meiyi Li
Javad Mohammadi
Soheil Kolouri
36
11
0
08 Feb 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Learning for Robust Combinatorial Optimization: Algorithm and Application
Zhihui Shao
Jianyi Yang
Cong Shen
Shaolei Ren
30
6
0
20 Dec 2021
Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications
Khaled B. Letaief
Yuanming Shi
Jianmin Lu
Jianhua Lu
32
416
0
24 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
24
14
0
02 Nov 2021
Hyperparameter Tuning is All You Need for LISTA
Xiaohan Chen
Jialin Liu
Zhangyang Wang
W. Yin
ODL
30
23
0
29 Oct 2021
Iterative Amortized Policy Optimization
Joseph Marino
Alexandre Piché
Alessandro Davide Ialongo
Yisong Yue
OffRL
54
22
0
20 Oct 2020
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Yunmei Chen
Hongcheng Liu
X. Ye
Qingchao Zhang
50
23
0
22 Jul 2020
L
2
^2
2
-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks
Yuning You
Tianlong Chen
Zhangyang Wang
Yang Shen
GNN
101
82
0
30 Mar 2020
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
159
234
0
04 Mar 2020
Safeguarded Learned Convex Optimization
Howard Heaton
Xiaohan Chen
Zhangyang Wang
W. Yin
18
22
0
04 Mar 2020
End-to-End Speech Separation with Unfolded Iterative Phase Reconstruction
Zhong-Qiu Wang
Jonathan Le Roux
DeLiang Wang
J. Hershey
88
123
0
26 Apr 2018
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
V. Papyan
Yaniv Romano
Michael Elad
56
284
0
27 Jul 2016
1