ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.12608
  4. Cited By
DIG: A Turnkey Library for Diving into Graph Deep Learning Research

DIG: A Turnkey Library for Diving into Graph Deep Learning Research

23 March 2021
Meng Liu
Youzhi Luo
Limei Wang
Yaochen Xie
Haonan Yuan
Shurui Gui
Haiyang Yu
Zhao Xu
Jingtun Zhang
Yi Liu
Keqiang Yan
Haoran Liu
Cong Fu
Bora Oztekin
Xuan Zhang
Shuiwang Ji
    GNN
ArXivPDFHTML

Papers citing "DIG: A Turnkey Library for Diving into Graph Deep Learning Research"

26 / 76 papers shown
Title
PyTorch Geometric Signed Directed: A Software Package on Graph Neural
  Networks for Signed and Directed Graphs
PyTorch Geometric Signed Directed: A Software Package on Graph Neural Networks for Signed and Directed Graphs
Yixuan He
Xitong Zhang
Junjie Huang
Benedek Rozemberczki
Mihai Cucuringu
G. Reinert
24
14
0
22 Feb 2022
Task-Agnostic Graph Explanations
Task-Agnostic Graph Explanations
Yaochen Xie
S. Katariya
Xianfeng Tang
E-Wen Huang
Nikhil S. Rao
Karthik Subbian
Shuiwang Ji
40
25
0
16 Feb 2022
Self-Supervised Representation Learning via Latent Graph Prediction
Self-Supervised Representation Learning via Latent Graph Prediction
Yaochen Xie
Zhao Xu
Shuiwang Ji
SSL
22
30
0
16 Feb 2022
TorchDrug: A Powerful and Flexible Machine Learning Platform for Drug
  Discovery
TorchDrug: A Powerful and Flexible Machine Learning Platform for Drug Discovery
Zhaocheng Zhu
Chence Shi
Zuobai Zhang
Shengchao Liu
Minghao Xu
...
Chang Ma
Runcheng Liu
Louis-Pascal Xhonneux
Meng Qu
Jian Tang
OOD
VLM
MedIm
14
70
0
16 Feb 2022
ChemicalX: A Deep Learning Library for Drug Pair Scoring
ChemicalX: A Deep Learning Library for Drug Pair Scoring
Benedek Rozemberczki
Charles Tapley Hoyt
A. Gogleva
Piotr Grabowski
Klas Karis
...
Sebastian Nilsson
M. Ughetto
Yu-Chiang Frank Wang
Tyler Derr
Benjamin M. Gyori
15
25
0
10 Feb 2022
Score-based Generative Modeling of Graphs via the System of Stochastic
  Differential Equations
Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations
Jaehyeong Jo
Seul Lee
Sung Ju Hwang
DiffM
22
210
0
05 Feb 2022
GStarX: Explaining Graph Neural Networks with Structure-Aware
  Cooperative Games
GStarX: Explaining Graph Neural Networks with Structure-Aware Cooperative Games
Shichang Zhang
Yozen Liu
Neil Shah
Yizhou Sun
FAtt
28
45
0
28 Jan 2022
Explaining GNN over Evolving Graphs using Information Flow
Explaining GNN over Evolving Graphs using Information Flow
Yazheng Liu
Xi Zhang
Sihong Xie
FAtt
9
0
0
19 Nov 2021
Trustworthy AI: A Computational Perspective
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
98
196
0
12 Jul 2021
Robust Counterfactual Explanations on Graph Neural Networks
Robust Counterfactual Explanations on Graph Neural Networks
Mohit Bajaj
Lingyang Chu
Zihui Xue
J. Pei
Lanjun Wang
P. C. Lam
Yong Zhang
OOD
37
96
0
08 Jul 2021
Graph Feature Gating Networks
Graph Feature Gating Networks
Wei Jin
Xiaorui Liu
Yao Ma
Tyler Derr
Charu C. Aggarwal
Jiliang Tang
32
0
0
10 May 2021
PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural
  Machine Learning Models
PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models
Benedek Rozemberczki
P. Scherer
Yixuan He
G. Panagopoulos
Alexander Riedel
...
Oliver Kiss
Ferenc Béres
Guzmán López
Nicolas Collignon
Rik Sarkar
AI4CE
27
199
0
15 Apr 2021
FedGraphNN: A Federated Learning System and Benchmark for Graph Neural
  Networks
FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks
Chaoyang He
Keshav Balasubramanian
Emir Ceyani
Carl Yang
Han Xie
...
Yu Rong
P. Zhao
Junzhou Huang
M. Annavaram
Salman Avestimehr
FedML
OOD
21
2
0
14 Apr 2021
Automated Machine Learning on Graphs: A Survey
Automated Machine Learning on Graphs: A Survey
Ziwei Zhang
Xin Eric Wang
Wenwu Zhu
17
85
0
01 Mar 2021
Self-Supervised Learning of Graph Neural Networks: A Unified Review
Self-Supervised Learning of Graph Neural Networks: A Unified Review
Yaochen Xie
Zhao Xu
Jingtun Zhang
Zhengyang Wang
Shuiwang Ji
SSL
21
324
0
22 Feb 2021
On Explainability of Graph Neural Networks via Subgraph Explorations
On Explainability of Graph Neural Networks via Subgraph Explorations
Hao Yuan
Haiyang Yu
Jie Wang
Kang Li
Shuiwang Ji
FAtt
20
379
0
09 Feb 2021
Spherical Message Passing for 3D Graph Networks
Spherical Message Passing for 3D Graph Networks
Yi Liu
Limei Wang
Meng Liu
Xuan Zhang
Bora Oztekin
Shuiwang Ji
GNN
22
197
0
09 Feb 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
185
187
0
01 Feb 2021
GraphEBM: Molecular Graph Generation with Energy-Based Models
GraphEBM: Molecular Graph Generation with Energy-Based Models
Meng Liu
Keqiang Yan
Bora Oztekin
Shuiwang Ji
22
84
0
31 Jan 2021
Deep Graph Generators: A Survey
Deep Graph Generators: A Survey
Faezeh Faez
Yassaman Ommi
M. Baghshah
Hamid R. Rabiee
GNN
AI4CE
45
57
0
31 Dec 2020
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
167
591
0
31 Dec 2020
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
191
633
0
29 Nov 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,337
0
12 Feb 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
172
1,775
0
02 Mar 2017
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
250
3,236
0
24 Nov 2016
Previous
12