ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.11738
  4. Cited By
Learning physical properties of anomalous random walks using graph
  neural networks

Learning physical properties of anomalous random walks using graph neural networks

22 March 2021
Hippolyte Verdier
M. Duval
François Laurent
Alhassan Cassé
Christian L. Vestergaard
Jean-Baptiste Masson
ArXivPDFHTML

Papers citing "Learning physical properties of anomalous random walks using graph neural networks"

10 / 10 papers shown
Title
AnomalousNet: A Hybrid Approach with Attention U-Nets and Change Point Detection for Accurate Characterization of Anomalous Diffusion in Video Data
AnomalousNet: A Hybrid Approach with Attention U-Nets and Change Point Detection for Accurate Characterization of Anomalous Diffusion in Video Data
Yusef Ahsini
Marc Escoto
J. Alberto Conejero
28
0
0
07 Apr 2025
Bottom-up Iterative Anomalous Diffusion Detector (BI-ADD)
Junwoo Park
Nataliya Sokolovska
Clément Cabriel
Ignacio Izeddin
Judith Miné-Hattab
47
0
0
14 Mar 2025
Machine Learning Analysis of Anomalous Diffusion
Machine Learning Analysis of Anomalous Diffusion
Wenjie Cai
Yi Hu
X. Qu
Hui Zhao
Gongyi Wang
Jing Li
Zihan Huang
74
1
0
02 Dec 2024
Machine-Learning Solutions for the Analysis of Single-Particle Diffusion
  Trajectories
Machine-Learning Solutions for the Analysis of Single-Particle Diffusion Trajectories
Henrik Seckler
J. Szwabiński
Ralf Metzler
19
25
0
18 Aug 2023
Preface: Characterisation of Physical Processes from Anomalous Diffusion
  Data
Preface: Characterisation of Physical Processes from Anomalous Diffusion Data
Carlo Manzo
Gorka Muñoz-Gil
Giovanni Volpe
Miguel Ángel García-March
M. Lewenstein
Ralf Metzler
AI4CE
8
6
0
02 Jan 2023
Representation learning for a generalized, quantitative comparison of
  complex model outputs
Representation learning for a generalized, quantitative comparison of complex model outputs
Colin G. Cess
Stacey D. Finley
22
2
0
12 Aug 2022
Variational inference of fractional Brownian motion with linear
  computational complexity
Variational inference of fractional Brownian motion with linear computational complexity
Hippolyte Verdier
Franccois Laurent
Alhassan Cassé
Christian L. Vestergaard
Jean-Baptiste Masson
25
6
0
15 Mar 2022
Unsupervised learning of anomalous diffusion data
Unsupervised learning of anomalous diffusion data
Gorka Muñoz-Gil
Guillem Guigo i Corominas
M. Lewenstein
DiffM
23
17
0
07 Aug 2021
WaveNet-Based Deep Neural Networks for the Characterization of Anomalous
  Diffusion (WADNet)
WaveNet-Based Deep Neural Networks for the Characterization of Anomalous Diffusion (WADNet)
Dezhong Li
Qiujin Yao
Zihan Huang
DiffM
14
19
0
14 Jun 2021
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,131
0
02 Dec 2016
1