Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.10948
Cited By
The Shape of Learning Curves: a Review
19 March 2021
T. Viering
Marco Loog
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Shape of Learning Curves: a Review"
40 / 40 papers shown
Title
Monotone Learning
Olivier Bousquet
Amit Daniely
Haim Kaplan
Yishay Mansour
Shay Moran
Uri Stemmer
16
10
0
10 Feb 2022
Learning Curves for Decision Making in Supervised Machine Learning: A Survey
F. Mohr
Jan N. van Rijn
68
55
0
28 Jan 2022
Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Alethea Power
Yuri Burda
Harrison Edwards
Igor Babuschkin
Vedant Misra
73
354
0
06 Jan 2022
Fast and Informative Model Selection using Learning Curve Cross-Validation
F. Mohr
Jan N. van Rijn
42
32
0
27 Nov 2021
Scaling Vision Transformers
Xiaohua Zhai
Alexander Kolesnikov
N. Houlsby
Lucas Beyer
ViT
128
1,080
0
08 Jun 2021
Learning Curve Theory
Marcus Hutter
188
62
0
08 Feb 2021
Risk-Monotonicity in Statistical Learning
Zakaria Mhammedi
68
8
0
28 Nov 2020
A Theory of Universal Learning
Olivier Bousquet
Steve Hanneke
Shay Moran
Ramon van Handel
Amir Yehudayoff
57
54
0
09 Nov 2020
Learning Curves for Analysis of Deep Networks
Derek Hoiem
Tanmay Gupta
Zhizhong Li
Michal Shlapentokh-Rothman
49
26
0
21 Oct 2020
A Note on High-Probability versus In-Expectation Guarantees of Generalization Bounds in Machine Learning
A. Mey
25
3
0
06 Oct 2020
Small Data, Big Decisions: Model Selection in the Small-Data Regime
J. Bornschein
Francesco Visin
Simon Osindero
31
39
0
26 Sep 2020
A critical analysis of metrics used for measuring progress in artificial intelligence
Kathrin Blagec
Georg Dorffner
M. Moradi
Matthias Samwald
55
33
0
06 Aug 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
67
61
0
03 Aug 2020
Triple descent and the two kinds of overfitting: Where & why do they appear?
Stéphane dÁscoli
Levent Sagun
Giulio Biroli
39
80
0
05 Jun 2020
A Brief Prehistory of Double Descent
Marco Loog
T. Viering
A. Mey
Jesse H. Krijthe
David Tax
43
69
0
07 Apr 2020
Optimal Regularization Can Mitigate Double Descent
Preetum Nakkiran
Prayaag Venkat
Sham Kakade
Tengyu Ma
78
132
0
04 Mar 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
522
4,773
0
23 Jan 2020
More Data Can Hurt for Linear Regression: Sample-wise Double Descent
Preetum Nakkiran
42
68
0
16 Dec 2019
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
119
935
0
04 Dec 2019
Making Learners (More) Monotone
T. Viering
A. Mey
Marco Loog
19
10
0
25 Nov 2019
A Constructive Prediction of the Generalization Error Across Scales
Jonathan S. Rosenfeld
Amir Rosenfeld
Yonatan Belinkov
Nir Shavit
91
211
0
27 Sep 2019
Minimizers of the Empirical Risk and Risk Monotonicity
Marco Loog
T. Viering
A. Mey
42
28
0
11 Jul 2019
Posterior Variance Analysis of Gaussian Processes with Application to Average Learning Curves
Armin Lederer
Jonas Umlauft
Sandra Hirche
47
25
0
04 Jun 2019
Phase transition in PCA with missing data: Reduced signal-to-noise ratio, not sample size!
Niels Bruun Ipsen
Lars Kai Hansen
28
6
0
02 May 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
155
743
0
19 Mar 2019
A review of domain adaptation without target labels
Wouter M. Kouw
Marco Loog
OOD
VLM
34
486
0
16 Jan 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
195
1,638
0
28 Dec 2018
Characterizing and Avoiding Negative Transfer
Zirui Wang
Zihang Dai
Barnabás Póczós
J. Carbonell
85
415
0
24 Nov 2018
A jamming transition from under- to over-parametrization affects loss landscape and generalization
S. Spigler
Mario Geiger
Stéphane dÁscoli
Levent Sagun
Giulio Biroli
Matthieu Wyart
58
153
0
22 Oct 2018
Exploring the Limits of Weakly Supervised Pretraining
D. Mahajan
Ross B. Girshick
Vignesh Ramanathan
Kaiming He
Manohar Paluri
Yixuan Li
Ashwin R. Bharambe
Laurens van der Maaten
VLM
176
1,367
0
02 May 2018
Deep Learning Scaling is Predictable, Empirically
Joel Hestness
Sharan Narang
Newsha Ardalani
G. Diamos
Heewoo Jun
Hassan Kianinejad
Md. Mostofa Ali Patwary
Yang Yang
Yanqi Zhou
87
736
0
01 Dec 2017
Supervised Classification: Quite a Brief Overview
Marco Loog
SSL
34
21
0
25 Oct 2017
High-dimensional dynamics of generalization error in neural networks
Madhu S. Advani
Andrew M. Saxe
AI4CE
128
469
0
10 Oct 2017
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
Chen Sun
Abhinav Shrivastava
Saurabh Singh
Abhinav Gupta
VLM
159
2,393
0
10 Jul 2017
The Peaking Phenomenon in Semi-supervised Learning
Jesse H. Krijthe
Marco Loog
SSL
31
6
0
17 Oct 2016
Learning Visual Features from Large Weakly Supervised Data
Armand Joulin
Laurens van der Maaten
Allan Jabri
Nicolas Vasilache
SSL
87
406
0
06 Nov 2015
Introducing Geometry in Active Learning for Image Segmentation
Ksenia Konyushkova
Raphael Sznitman
Pascal Fua
38
75
0
20 Aug 2015
Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It
Peter Grünwald
T. V. Ommen
77
267
0
11 Dec 2014
When Ignorance is Bliss
Peter Grünwald
Joseph Y. Halpern
44
78
0
27 Jul 2014
Minimizing The Misclassification Error Rate Using a Surrogate Convex Loss
Shai Ben-David
D. Loker
Nathan Srebro
Karthik Sridharan
76
65
0
27 Jun 2012
1