ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.10142
  4. Cited By
Reduced Precision Strategies for Deep Learning: A High Energy Physics
  Generative Adversarial Network Use Case

Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case

18 March 2021
F. Rehm
S. Vallecorsa
V. Saletore
Hans Pabst
Adel Chaibi
V. Codreanu
Kerstin Borras
D. Krücker
    MQ
ArXivPDFHTML

Papers citing "Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case"

5 / 5 papers shown
Title
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Sanghwan Bae
Jiwoo Hong
Min Young Lee
Hanbyul Kim
Jeongyeon Nam
Donghyun Kwak
OffRL
LRM
53
0
0
04 Apr 2025
New directions for surrogate models and differentiable programming for
  High Energy Physics detector simulation
New directions for surrogate models and differentiable programming for High Energy Physics detector simulation
Andreas Adelmann
W. Hopkins
E. Kourlitis
Michael Kagan
Gregor Kasieczka
...
David Shih
Vinicius Mikuni
Benjamin Nachman
K. Pedro
D. Winklehner
27
29
0
15 Mar 2022
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
  Normalizing Flows
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
AI4CE
31
81
0
09 Jun 2021
Latent Space Refinement for Deep Generative Models
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDL
GAN
DRL
DiffM
10
27
0
01 Jun 2021
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
27
178
0
02 Feb 2021
1