ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.09577
  4. Cited By
Theoretical bounds on data requirements for the ray-based classification
v1v2v3 (latest)

Theoretical bounds on data requirements for the ray-based classification

17 March 2021
Brian Weber
Sandesh S. Kalantre
T. McJunkin
Jacob M. Taylor
Justyna P. Zwolak
ArXiv (abs)PDFHTML

Papers citing "Theoretical bounds on data requirements for the ray-based classification"

11 / 11 papers shown
Title
Estimation of Convex Polytopes for Automatic Discovery of Charge State
  Transitions in Quantum Dot Arrays
Estimation of Convex Polytopes for Automatic Discovery of Charge State Transitions in Quantum Dot Arrays
Oswin Krause
Torbjørn Rasmussen
Bertram Brovang
A. Chatterjee
F. Kuemmeth
52
7
0
20 Aug 2021
Ray-based framework for state identification in quantum dot devices
Ray-based framework for state identification in quantum dot devices
Justyna P. Zwolak
T. McJunkin
Sandesh S. Kalantre
S. Neyens
E. MacQuarrie
M. A. Eriksson
Jacob M. Taylor
61
19
0
23 Feb 2021
Ray-based classification framework for high-dimensional data
Ray-based classification framework for high-dimensional data
Justyna P. Zwolak
Sandesh S. Kalantre
T. McJunkin
Brian Weber
Jacob M. Taylor
25
8
0
01 Oct 2020
PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape
  Representations
PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations
E. Tretschk
A. Tewari
Vladislav Golyanik
Michael Zollhöfer
Carsten Stoll
Christian Theobalt
3DPC3DH3DV
69
108
0
04 Aug 2020
Learning to Segment 3D Point Clouds in 2D Image Space
Learning to Segment 3D Point Clouds in 2D Image Space
Yecheng Lyu
Xinming Huang
Ziming Zhang
3DPC
79
52
0
12 Mar 2020
Quantum device fine-tuning using unsupervised embedding learning
Quantum device fine-tuning using unsupervised embedding learning
N. V. Esbroeck
D. Lennon
H. Moon
Vu-Linh Nguyen
F. Vigneau
...
L. Yu
D. Zumbuhl
G. Briggs
D. Sejdinovic
N. Ares
51
29
0
13 Jan 2020
Machine learning enables completely automatic tuning of a quantum device
  faster than human experts
Machine learning enables completely automatic tuning of a quantum device faster than human experts
H. Moon
D. Lennon
J. Kirkpatrick
N. V. Esbroeck
L. Camenzind
...
G. Briggs
Michael A. Osborne
D. Sejdinovic
E. Laird
N. Ares
52
73
0
08 Jan 2020
RGB-D image-based Object Detection: from Traditional Methods to Deep
  Learning Techniques
RGB-D image-based Object Detection: from Traditional Methods to Deep Learning Techniques
I. Ward
Hamid Laga
Bennamoun
65
16
0
22 Jul 2019
Efficiently measuring a quantum device using machine learning
Efficiently measuring a quantum device using machine learning
D. Lennon
H. Moon
L. Camenzind
Liuqi Yu
D. Zumbuhl
G. Briggs
Michael A. Osborne
E. Laird
N. Ares
40
69
0
23 Oct 2018
3D Object Classification via Spherical Projections
3D Object Classification via Spherical Projections
Zhangjie Cao
Qi-Xing Huang
K. Ramani
3DPC
65
67
0
12 Dec 2017
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas Guibas
3DH3DPC3DVPINN
500
14,384
0
02 Dec 2016
1