ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.08877
  4. Cited By
Spatial Dependency Networks: Neural Layers for Improved Generative Image
  Modeling

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling

16 March 2021
DJordje Miladinović
Aleksandar Stanić
Stefan Bauer
Jürgen Schmidhuber
J. M. Buhmann
    DRL
ArXivPDFHTML

Papers citing "Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling"

7 / 7 papers shown
Title
Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs
Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs
Ðorðe Miladinovic
Kumar Shridhar
Kushal Kumar Jain
Max B. Paulus
J. M. Buhmann
Mrinmaya Sachan
Carl Allen
DRL
28
5
0
26 Sep 2022
Structured Uncertainty in the Observation Space of Variational
  Autoencoders
Structured Uncertainty in the Observation Space of Variational Autoencoders
James A. G. Langley
M. Monteiro
Charles Jones
Nick Pawlowski
Ben Glocker
CML
OOD
BDL
DRL
39
2
0
25 May 2022
Boxhead: A Dataset for Learning Hierarchical Representations
Boxhead: A Dataset for Learning Hierarchical Representations
Yukun Chen
Andrea Dittadi
Frederik Trauble
Stefan Bauer
Bernhard Schölkopf
CML
99
2
0
07 Oct 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
49
17
0
30 Jun 2021
Spatially Dependent U-Nets: Highly Accurate Architectures for Medical
  Imaging Segmentation
Spatially Dependent U-Nets: Highly Accurate Architectures for Medical Imaging Segmentation
João B. S. Carvalho
J. Santinha
DJordje Miladinović
J. M. Buhmann
SSeg
24
0
0
22 Mar 2021
On Disentangled Representations Learned From Correlated Data
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
272
2,552
0
25 Jan 2016
1