ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.07364
  4. Cited By
A Unified Game-Theoretic Interpretation of Adversarial Robustness

A Unified Game-Theoretic Interpretation of Adversarial Robustness

12 March 2021
Jie Ren
Die Zhang
Yisen Wang
Lu Chen
Zhanpeng Zhou
Yiting Chen
Xu Cheng
Xin Eric Wang
Meng Zhou
Jie Shi
Quanshi Zhang
    AAML
ArXivPDFHTML

Papers citing "A Unified Game-Theoretic Interpretation of Adversarial Robustness"

10 / 10 papers shown
Title
The Adaptive Arms Race: Redefining Robustness in AI Security
The Adaptive Arms Race: Redefining Robustness in AI Security
Ilias Tsingenopoulos
Vera Rimmer
Davy Preuveneers
Fabio Pierazzi
Lorenzo Cavallaro
Wouter Joosen
AAML
72
0
0
20 Dec 2023
Balance, Imbalance, and Rebalance: Understanding Robust Overfitting from
  a Minimax Game Perspective
Balance, Imbalance, and Rebalance: Understanding Robust Overfitting from a Minimax Game Perspective
Yifei Wang
Liangchen Li
Jiansheng Yang
Zhouchen Lin
Yisen Wang
23
11
0
30 Oct 2023
On the Connection between Invariant Learning and Adversarial Training
  for Out-of-Distribution Generalization
On the Connection between Invariant Learning and Adversarial Training for Out-of-Distribution Generalization
Shiji Xin
Yifei Wang
Jingtong Su
Yisen Wang
OOD
21
7
0
18 Dec 2022
MixBoost: Improving the Robustness of Deep Neural Networks by Boosting
  Data Augmentation
MixBoost: Improving the Robustness of Deep Neural Networks by Boosting Data Augmentation
Zhendong Liu
Wenyu Jiang
Min Guo
Chongjun Wang
AAML
21
1
0
08 Dec 2022
Explanation-based Counterfactual Retraining(XCR): A Calibration Method
  for Black-box Models
Explanation-based Counterfactual Retraining(XCR): A Calibration Method for Black-box Models
Liu Zhendong
Wenyu Jiang
Yan Zhang
Chongjun Wang
CML
6
0
0
22 Jun 2022
Excitement Surfeited Turns to Errors: Deep Learning Testing Framework
  Based on Excitable Neurons
Excitement Surfeited Turns to Errors: Deep Learning Testing Framework Based on Excitable Neurons
Haibo Jin
Ruoxi Chen
Haibin Zheng
Jinyin Chen
Yao Cheng
Yue Yu
Xianglong Liu
AAML
14
6
0
12 Feb 2022
On the Convergence and Robustness of Adversarial Training
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
194
345
0
15 Dec 2021
Constructing Unrestricted Adversarial Examples with Generative Models
Constructing Unrestricted Adversarial Examples with Generative Models
Yang Song
Rui Shu
Nate Kushman
Stefano Ermon
GAN
AAML
185
302
0
21 May 2018
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,099
0
02 Dec 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
281
5,835
0
08 Jul 2016
1