ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.04850
  4. Cited By
Quantifying Ignorance in Individual-Level Causal-Effect Estimates under
  Hidden Confounding

Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

8 March 2021
Andrew Jesson
Sören Mindermann
Y. Gal
Uri Shalit
    CML
ArXivPDFHTML

Papers citing "Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding"

39 / 39 papers shown
Title
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Hechuan Wen
Tong Chen
Mingming Gong
Li Kheng Chai
S. Sadiq
Hongzhi Yin
CML
58
0
0
08 May 2025
Your Assumed DAG is Wrong and Here's How To Deal With It
Kirtan Padh
Zhufeng Li
Cecilia Casolo
Niki Kilbertus
CML
45
0
0
24 Feb 2025
Progressive Generalization Risk Reduction for Data-Efficient Causal Effect Estimation
Hechuan Wen
Tong Chen
Guanhua Ye
Li Kheng Chai
S. Sadiq
Hongzhi Yin
OOD
75
1
0
18 Nov 2024
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
56
2
0
05 Nov 2024
Meta-Learners for Partially-Identified Treatment Effects Across Multiple
  Environments
Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments
J. Schweisthal
Dennis Frauen
M. Schaar
Stefan Feuerriegel
CML
47
3
0
04 Jun 2024
Causal Effect Estimation Using Random Hyperplane Tessellations
Causal Effect Estimation Using Random Hyperplane Tessellations
Abhishek Dalvi
Neil Ashtekar
V. Honavar
48
0
0
16 Apr 2024
Hidden yet quantifiable: A lower bound for confounding strength using
  randomized trials
Hidden yet quantifiable: A lower bound for confounding strength using randomized trials
Piersilvio De Bartolomeis
Javier Abad
Konstantin Donhauser
Fanny Yang
CML
38
7
0
06 Dec 2023
Causal Fairness under Unobserved Confounding: A Neural Sensitivity
  Framework
Causal Fairness under Unobserved Confounding: A Neural Sensitivity Framework
Maresa Schröder
Dennis Frauen
Stefan Feuerriegel
CML
32
6
0
30 Nov 2023
A Neural Framework for Generalized Causal Sensitivity Analysis
A Neural Framework for Generalized Causal Sensitivity Analysis
Dennis Frauen
F. Imrie
Alicia Curth
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
31
10
0
27 Nov 2023
Bounds on Representation-Induced Confounding Bias for Treatment Effect
  Estimation
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
32
9
0
19 Nov 2023
Bayesian Neural Controlled Differential Equations for Treatment Effect
  Estimation
Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation
Konstantin Hess
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
27
14
0
26 Oct 2023
To Predict or to Reject: Causal Effect Estimation with Uncertainty on
  Networked Data
To Predict or to Reject: Causal Effect Estimation with Uncertainty on Networked Data
Hechuan Wen
Tong Chen
Li Kheng Chai
S. Sadiq
Kai Zheng
Hongzhi Yin
CML
24
1
0
15 Sep 2023
Ensembled Prediction Intervals for Causal Outcomes Under Hidden
  Confounding
Ensembled Prediction Intervals for Causal Outcomes Under Hidden Confounding
Myrl G. Marmarelis
Greg Ver Steeg
Aram Galstyan
Fred Morstatter
CML
OOD
18
5
0
15 Jun 2023
Partial Counterfactual Identification of Continuous Outcomes with a
  Curvature Sensitivity Model
Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity Model
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
19
11
0
02 Jun 2023
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden
  Confounding
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding
Alizée Pace
Hugo Yèche
Bernhard Schölkopf
Gunnar Rätsch
Guy Tennenholtz
OffRL
16
6
0
01 Jun 2023
Sharp Bounds for Generalized Causal Sensitivity Analysis
Sharp Bounds for Generalized Causal Sensitivity Analysis
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
CML
35
18
0
26 May 2023
Counterfactual Generative Models for Time-Varying Treatments
Counterfactual Generative Models for Time-Varying Treatments
Shenghao Wu
Wen-liang Zhou
Minshuo Chen
Shixiang Zhu
DiffM
CML
39
6
0
25 May 2023
B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
  Hidden Confounding
B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding
M. Oprescu
Jacob Dorn
Marah Ghoummaid
Andrew Jesson
Nathan Kallus
Uri Shalit
CML
FedML
24
24
0
20 Apr 2023
Using uncertainty-aware machine learning models to study aerosol-cloud
  interactions
Using uncertainty-aware machine learning models to study aerosol-cloud interactions
Maelys Solal
Andrew Jesson
Y. Gal
A. Douglas
18
0
0
30 Nov 2022
Normalizing Flows for Interventional Density Estimation
Normalizing Flows for Interventional Density Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
50
18
0
13 Sep 2022
Quantitative probing: Validating causal models using quantitative domain
  knowledge
Quantitative probing: Validating causal models using quantitative domain knowledge
Daniel Grünbaum
M. L. Stern
E. Lang
20
5
0
07 Sep 2022
Estimating individual treatment effects under unobserved confounding
  using binary instruments
Estimating individual treatment effects under unobserved confounding using binary instruments
Dennis Frauen
Stefan Feuerriegel
CML
21
17
0
17 Aug 2022
Prescriptive maintenance with causal machine learning
Prescriptive maintenance with causal machine learning
Toon Vanderschueren
R. Boute
Tim Verdonck
Bart Baesens
Wouter Verbeke
CML
14
1
0
03 Jun 2022
Causal Inference from Small High-dimensional Datasets
Causal Inference from Small High-dimensional Datasets
Raquel Y. S. Aoki
Martin Ester
CML
24
4
0
19 May 2022
Towards assessing agricultural land suitability with causal machine
  learning
Towards assessing agricultural land suitability with causal machine learning
Georgios Giannarakis
Vasileios Sitokonstantinou
R. Lorilla
C. Kontoes
CML
26
20
0
27 Apr 2022
Partial Identification of Dose Responses with Hidden Confounders
Partial Identification of Dose Responses with Hidden Confounders
Myrl G. Marmarelis
E. Haddad
Andrew Jesson
N. Jahanshad
Aram Galstyan
Greg Ver Steeg
CML
33
7
0
24 Apr 2022
Scalable Sensitivity and Uncertainty Analysis for Causal-Effect
  Estimates of Continuous-Valued Interventions
Scalable Sensitivity and Uncertainty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions
Andrew Jesson
A. Douglas
P. Manshausen
Maelys Solal
N. Meinshausen
P. Stier
Y. Gal
Uri Shalit
CML
23
26
0
21 Apr 2022
Predicting the impact of treatments over time with uncertainty aware
  neural differential equations
Predicting the impact of treatments over time with uncertainty aware neural differential equations
E. Brouwer
J. Hernández
Stephanie L. Hyland
OOD
CML
22
25
0
24 Feb 2022
Generalizing Off-Policy Evaluation From a Causal Perspective For
  Sequential Decision-Making
Generalizing Off-Policy Evaluation From a Causal Perspective For Sequential Decision-Making
S. Parbhoo
Shalmali Joshi
Finale Doshi-Velez
ELM
CML
OffRL
11
5
0
20 Jan 2022
Long Story Short: Omitted Variable Bias in Causal Machine Learning
Long Story Short: Omitted Variable Bias in Causal Machine Learning
Victor Chernozhukov
Carlos Cinelli
Whitney Newey
Amit Sharma
Vasilis Syrgkanis
CML
24
35
0
26 Dec 2021
Causal Multi-Agent Reinforcement Learning: Review and Open Problems
Causal Multi-Agent Reinforcement Learning: Review and Open Problems
St John Grimbly
Jonathan P. Shock
Arnu Pretorius
44
17
0
12 Nov 2021
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer
  Treatment-Effects from Observational Data
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data
Andrew Jesson
P. Tigas
Joost R. van Amersfoort
Andreas Kirsch
Uri Shalit
Y. Gal
CML
44
30
0
03 Nov 2021
Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in
  the Southeast Pacific
Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific
Andrew Jesson
P. Manshausen
A. Douglas
D. Watson‐Parris
Y. Gal
P. Stier
AI4Cl
18
6
0
28 Oct 2021
DoWhy: Addressing Challenges in Expressing and Validating Causal
  Assumptions
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
Amit Sharma
Vasilis Syrgkanis
Cheng Zhang
Emre Kıcıman
24
26
0
27 Aug 2021
Hölder Bounds for Sensitivity Analysis in Causal Reasoning
Hölder Bounds for Sensitivity Analysis in Causal Reasoning
Serge Assaad
Shuxi Zeng
H. Pfister
Fan Li
Lawrence Carin
14
0
0
09 Jul 2021
Causal Effect Inference for Structured Treatments
Causal Effect Inference for Structured Treatments
Jean Kaddour
Yuchen Zhu
Qi Liu
Matt J. Kusner
Ricardo M. A. Silva
CML
177
50
0
03 Jun 2021
Generalization Bounds and Representation Learning for Estimation of
  Potential Outcomes and Causal Effects
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects
Fredrik D. Johansson
Uri Shalit
Nathan Kallus
David Sontag
CML
OOD
28
98
0
21 Jan 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1