Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.04850
Cited By
Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding
8 March 2021
Andrew Jesson
Sören Mindermann
Y. Gal
Uri Shalit
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding"
39 / 39 papers shown
Title
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Hechuan Wen
Tong Chen
Mingming Gong
Li Kheng Chai
S. Sadiq
Hongzhi Yin
CML
58
0
0
08 May 2025
Your Assumed DAG is Wrong and Here's How To Deal With It
Kirtan Padh
Zhufeng Li
Cecilia Casolo
Niki Kilbertus
CML
45
0
0
24 Feb 2025
Progressive Generalization Risk Reduction for Data-Efficient Causal Effect Estimation
Hechuan Wen
Tong Chen
Guanhua Ye
Li Kheng Chai
S. Sadiq
Hongzhi Yin
OOD
75
1
0
18 Nov 2024
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
54
2
0
05 Nov 2024
Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments
J. Schweisthal
Dennis Frauen
M. Schaar
Stefan Feuerriegel
CML
45
3
0
04 Jun 2024
Causal Effect Estimation Using Random Hyperplane Tessellations
Abhishek Dalvi
Neil Ashtekar
V. Honavar
48
0
0
16 Apr 2024
Hidden yet quantifiable: A lower bound for confounding strength using randomized trials
Piersilvio De Bartolomeis
Javier Abad
Konstantin Donhauser
Fanny Yang
CML
38
7
0
06 Dec 2023
Causal Fairness under Unobserved Confounding: A Neural Sensitivity Framework
Maresa Schröder
Dennis Frauen
Stefan Feuerriegel
CML
32
6
0
30 Nov 2023
A Neural Framework for Generalized Causal Sensitivity Analysis
Dennis Frauen
F. Imrie
Alicia Curth
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
31
10
0
27 Nov 2023
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
32
9
0
19 Nov 2023
Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation
Konstantin Hess
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
27
14
0
26 Oct 2023
To Predict or to Reject: Causal Effect Estimation with Uncertainty on Networked Data
Hechuan Wen
Tong Chen
Li Kheng Chai
S. Sadiq
Kai Zheng
Hongzhi Yin
CML
22
1
0
15 Sep 2023
Ensembled Prediction Intervals for Causal Outcomes Under Hidden Confounding
Myrl G. Marmarelis
Greg Ver Steeg
Aram Galstyan
Fred Morstatter
CML
OOD
16
5
0
15 Jun 2023
Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity Model
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
19
11
0
02 Jun 2023
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding
Alizée Pace
Hugo Yèche
Bernhard Schölkopf
Gunnar Rätsch
Guy Tennenholtz
OffRL
16
6
0
01 Jun 2023
Sharp Bounds for Generalized Causal Sensitivity Analysis
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
CML
33
18
0
26 May 2023
Counterfactual Generative Models for Time-Varying Treatments
Shenghao Wu
Wen-liang Zhou
Minshuo Chen
Shixiang Zhu
DiffM
CML
36
6
0
25 May 2023
B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding
M. Oprescu
Jacob Dorn
Marah Ghoummaid
Andrew Jesson
Nathan Kallus
Uri Shalit
CML
FedML
24
24
0
20 Apr 2023
Using uncertainty-aware machine learning models to study aerosol-cloud interactions
Maelys Solal
Andrew Jesson
Y. Gal
A. Douglas
16
0
0
30 Nov 2022
Normalizing Flows for Interventional Density Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
50
18
0
13 Sep 2022
Quantitative probing: Validating causal models using quantitative domain knowledge
Daniel Grünbaum
M. L. Stern
E. Lang
20
5
0
07 Sep 2022
Estimating individual treatment effects under unobserved confounding using binary instruments
Dennis Frauen
Stefan Feuerriegel
CML
21
17
0
17 Aug 2022
Prescriptive maintenance with causal machine learning
Toon Vanderschueren
R. Boute
Tim Verdonck
Bart Baesens
Wouter Verbeke
CML
14
1
0
03 Jun 2022
Causal Inference from Small High-dimensional Datasets
Raquel Y. S. Aoki
Martin Ester
CML
24
4
0
19 May 2022
Towards assessing agricultural land suitability with causal machine learning
Georgios Giannarakis
Vasileios Sitokonstantinou
R. Lorilla
C. Kontoes
CML
26
20
0
27 Apr 2022
Partial Identification of Dose Responses with Hidden Confounders
Myrl G. Marmarelis
E. Haddad
Andrew Jesson
N. Jahanshad
Aram Galstyan
Greg Ver Steeg
CML
33
7
0
24 Apr 2022
Scalable Sensitivity and Uncertainty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions
Andrew Jesson
A. Douglas
P. Manshausen
Maelys Solal
N. Meinshausen
P. Stier
Y. Gal
Uri Shalit
CML
23
26
0
21 Apr 2022
Predicting the impact of treatments over time with uncertainty aware neural differential equations
E. Brouwer
J. Hernández
Stephanie L. Hyland
OOD
CML
22
25
0
24 Feb 2022
Generalizing Off-Policy Evaluation From a Causal Perspective For Sequential Decision-Making
S. Parbhoo
Shalmali Joshi
Finale Doshi-Velez
ELM
CML
OffRL
11
5
0
20 Jan 2022
Long Story Short: Omitted Variable Bias in Causal Machine Learning
Victor Chernozhukov
Carlos Cinelli
Whitney Newey
Amit Sharma
Vasilis Syrgkanis
CML
24
35
0
26 Dec 2021
Causal Multi-Agent Reinforcement Learning: Review and Open Problems
St John Grimbly
Jonathan P. Shock
Arnu Pretorius
44
17
0
12 Nov 2021
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data
Andrew Jesson
P. Tigas
Joost R. van Amersfoort
Andreas Kirsch
Uri Shalit
Y. Gal
CML
44
30
0
03 Nov 2021
Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific
Andrew Jesson
P. Manshausen
A. Douglas
D. Watson‐Parris
Y. Gal
P. Stier
AI4Cl
15
6
0
28 Oct 2021
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
Amit Sharma
Vasilis Syrgkanis
Cheng Zhang
Emre Kıcıman
24
26
0
27 Aug 2021
Hölder Bounds for Sensitivity Analysis in Causal Reasoning
Serge Assaad
Shuxi Zeng
H. Pfister
Fan Li
Lawrence Carin
14
0
0
09 Jul 2021
Causal Effect Inference for Structured Treatments
Jean Kaddour
Yuchen Zhu
Qi Liu
Matt J. Kusner
Ricardo M. A. Silva
CML
177
50
0
03 Jun 2021
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects
Fredrik D. Johansson
Uri Shalit
Nathan Kallus
David Sontag
CML
OOD
26
98
0
21 Jan 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1