ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.04257
  4. Cited By
Student-Teacher Feature Pyramid Matching for Anomaly Detection

Student-Teacher Feature Pyramid Matching for Anomaly Detection

7 March 2021
Guodong Wang
Shumin Han
Errui Ding
Di Huang
ArXivPDFHTML

Papers citing "Student-Teacher Feature Pyramid Matching for Anomaly Detection"

30 / 30 papers shown
Title
Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt
Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt
Bin-Bin Gao
80
6
0
14 May 2025
MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning
MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning
Bin-Bin Gao
VLM
140
0
0
14 May 2025
PaRCE: Probabilistic and Reconstruction-based Competency Estimation for CNN-based Image Classification
PaRCE: Probabilistic and Reconstruction-based Competency Estimation for CNN-based Image Classification
Sara Pohland
Claire Tomlin
UQCV
144
1
0
22 Nov 2024
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection
Jia Guo
Shuai Lu
Weihang Zhang
Huiqi Li
Huiqi Li
Hongen Liao
ViT
108
12
0
23 May 2024
MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection
MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection
Junzhuo Chen
Shitong Kang
61
0
0
10 May 2024
CutPaste: Self-Supervised Learning for Anomaly Detection and
  Localization
CutPaste: Self-Supervised Learning for Anomaly Detection and Localization
Chun-Liang Li
Kihyuk Sohn
Jinsung Yoon
Tomas Pfister
SSL
UQCV
74
774
0
08 Apr 2021
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
  Localization
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
Thomas Defard
Aleksandr Setkov
Angélique Loesch
Romaric Audigier
UQCV
73
835
0
17 Nov 2020
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Jihun Yi
Sungroh Yoon
131
385
0
29 Jun 2020
Sub-Image Anomaly Detection with Deep Pyramid Correspondences
Sub-Image Anomaly Detection with Deep Pyramid Correspondences
Niv Cohen
Yedid Hoshen
64
473
0
05 May 2020
Towards Visually Explaining Variational Autoencoders
Towards Visually Explaining Variational Autoencoders
Wenqian Liu
Runze Li
Meng Zheng
Srikrishna Karanam
Ziyan Wu
B. Bhanu
Richard J. Radke
Mario Sznaier
89
217
0
18 Nov 2019
Uninformed Students: Student-Teacher Anomaly Detection with
  Discriminative Latent Embeddings
Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings
Paul Bergmann
Michael Fauser
David Sattlegger
C. Steger
68
663
0
06 Nov 2019
Adversarially Learned Anomaly Detection
Adversarially Learned Anomaly Detection
Houssam Zenati
Manon Romain
Chuan-Sheng Foo
Bruno Lecouat
V. Chandrasekhar
GAN
65
403
0
06 Dec 2018
Informed Democracy: Voting-based Novelty Detection for Action
  Recognition
Informed Democracy: Voting-based Novelty Detection for Action Recognition
Alina Roitberg
Ziad Al-Halah
Rainer Stiefelhagen
50
30
0
30 Oct 2018
Do Deep Generative Models Know What They Don't Know?
Do Deep Generative Models Know What They Don't Know?
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
OOD
53
756
0
22 Oct 2018
Metric Learning for Novelty and Anomaly Detection
Metric Learning for Novelty and Anomaly Detection
Marc Masana
Idoia Ruiz
J. Serrat
Joost van de Weijer
Antonio M. López
OODD
65
80
0
16 Aug 2018
Improving Unsupervised Defect Segmentation by Applying Structural
  Similarity to Autoencoders
Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
Paul Bergmann
Sindy Löwe
Michael Fauser
David Sattlegger
C. Steger
59
663
0
05 Jul 2018
Latent Space Autoregression for Novelty Detection
Latent Space Autoregression for Novelty Detection
Davide Abati
Angelo Porrello
Simone Calderara
Rita Cucchiara
100
433
0
04 Jul 2018
q-Space Novelty Detection with Variational Autoencoders
q-Space Novelty Detection with Variational Autoencoders
A. Vasilev
Vladimir Golkov
Marc Meissner
I. Lipp
Eleonora Sgarlata
V. Tomassini
Derek K. Jones
Daniel Cremers
DRL
45
59
0
08 Jun 2018
Deep Anomaly Detection Using Geometric Transformations
Deep Anomaly Detection Using Geometric Transformations
I. Golan
Ran El-Yaniv
86
606
0
28 May 2018
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training
S. Akçay
Amir Atapour-Abarghouei
T. Breckon
GAN
73
1,387
0
17 May 2018
Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain
  MR Images
Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images
Christoph Baur
Benedikt Wiestler
Shadi Albarqouni
Nassir Navab
UQCV
MedIm
52
442
0
12 Apr 2018
Anomaly Detection using One-Class Neural Networks
Anomaly Detection using One-Class Neural Networks
Raghavendra Chalapathy
A. Menon
Sanjay Chawla
UQCV
51
395
0
18 Feb 2018
Clustering and Unsupervised Anomaly Detection with L2 Normalized Deep
  Auto-Encoder Representations
Clustering and Unsupervised Anomaly Detection with L2 Normalized Deep Auto-Encoder Representations
Çağlar Aytekin
Xingyang Ni
Francesco Cricri
Emre B. Aksu
SSL
UQCV
49
146
0
01 Feb 2018
Unsupervised Anomaly Detection with Generative Adversarial Networks to
  Guide Marker Discovery
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
T. Schlegl
Philipp Seeböck
S. Waldstein
U. Schmidt-Erfurth
Georg Langs
MedIm
GAN
83
2,225
0
17 Mar 2017
Identifying and Categorizing Anomalies in Retinal Imaging Data
Identifying and Categorizing Anomalies in Retinal Imaging Data
Philipp Seeböck
S. Waldstein
S. Klimscha
Bianca S. Gerendas
R. Donner
T. Schlegl
U. Schmidt-Erfurth
Georg Langs
MedIm
66
53
0
02 Dec 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
256
19,929
0
07 Oct 2016
Deep-Anomaly: Fully Convolutional Neural Network for Fast Anomaly
  Detection in Crowded Scenes
Deep-Anomaly: Fully Convolutional Neural Network for Fast Anomaly Detection in Crowded Scenes
Mohammad Sabokrou
Mohsen Fayyaz
Mahmood Fathy
Zahra Moayed
Reinhard Klette
69
430
0
03 Sep 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
314
7,971
0
23 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
497
15,861
0
12 Nov 2013
1