ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.01931
  4. Cited By
Categorical Foundations of Gradient-Based Learning

Categorical Foundations of Gradient-Based Learning

2 March 2021
Geoffrey S. H. Cruttwell
Bruno Gavranović
Neil Ghani
Paul W. Wilson
Fabio Zanasi
    FedML
ArXivPDFHTML

Papers citing "Categorical Foundations of Gradient-Based Learning"

29 / 29 papers shown
Title
Accelerating Machine Learning Systems via Category Theory: Applications to Spherical Attention for Gene Regulatory Networks
Accelerating Machine Learning Systems via Category Theory: Applications to Spherical Attention for Gene Regulatory Networks
Vincent Abbott
Kotaro Kamiya
Gerard Glowacki
Yu Atsumi
Gioele Zardini
Yoshihiro Maruyama
29
0
0
14 May 2025
Logic Explanation of AI Classifiers by Categorical Explaining Functors
Logic Explanation of AI Classifiers by Categorical Explaining Functors
S. Fioravanti
Francesco Giannini
Paolo Frazzetto
Fabio Zanasi
Pietro Barbiero
54
0
0
20 Mar 2025
Reduce, Reuse, Recycle: Categories for Compositional Reinforcement Learning
Reduce, Reuse, Recycle: Categories for Compositional Reinforcement Learning
Georgios Bakirtzis
M. Savvas
Ruihan Zhao
Sandeep P. Chinchali
Ufuk Topcu
40
2
0
23 Aug 2024
On the Anatomy of Attention
On the Anatomy of Attention
Nikhil Khatri
Tuomas Laakkonen
Jonathon Liu
Vincent Wang-Ma'scianica
3DV
50
1
0
02 Jul 2024
A Pattern Language for Machine Learning Tasks
A Pattern Language for Machine Learning Tasks
Benjamin Rodatz
Ian Fan
Tuomas Laakkonen
Neil John Ortega
Thomas Hoffman
Vincent Wang-Ma'scianica
56
3
0
02 Jul 2024
Reinforcement Learning in Categorical Cybernetics
Reinforcement Learning in Categorical Cybernetics
Jules Hedges
Riu Rodríguez Sakamoto
40
3
0
03 Apr 2024
Deep Learning with Parametric Lenses
Deep Learning with Parametric Lenses
Geoffrey S. H. Cruttwell
Bruno Gavranović
Neil Ghani
Paul W. Wilson
Fabio Zanasi
33
2
0
30 Mar 2024
Generalized Gradient Descent is a Hypergraph Functor
Generalized Gradient Descent is a Hypergraph Functor
Tyler Hanks
Matthew Klawonn
James Fairbanks
27
0
0
28 Mar 2024
The Topos of Transformer Networks
Mattia Jacopo Villani
Peter McBurney
37
0
0
27 Mar 2024
Pooling Image Datasets With Multiple Covariate Shift and Imbalance
Sotirios Panagiotis Chytas
Vishnu Suresh Lokhande
Peiran Li
Vikas Singh
OOD
38
0
0
05 Mar 2024
Position: Categorical Deep Learning is an Algebraic Theory of All
  Architectures
Position: Categorical Deep Learning is an Algebraic Theory of All Architectures
Bruno Gavranovic
Paul Lessard
Andrew Dudzik
Tamara von Glehn
J. G. Araújo
Petar Velickovic
40
8
0
23 Feb 2024
Neural Circuit Diagrams: Robust Diagrams for the Communication,
  Implementation, and Analysis of Deep Learning Architectures
Neural Circuit Diagrams: Robust Diagrams for the Communication, Implementation, and Analysis of Deep Learning Architectures
Vincent Abbott
45
5
0
08 Feb 2024
Enriching Disentanglement: From Logical Definitions to Quantitative
  Metrics
Enriching Disentanglement: From Logical Definitions to Quantitative Metrics
Yivan Zhang
Masashi Sugiyama
22
1
0
19 May 2023
The Compositional Structure of Bayesian Inference
The Compositional Structure of Bayesian Inference
Dylan Braithwaite
Jules Hedges
T. S. C. Smithe
24
7
0
10 May 2023
Categorical Foundations of Explainable AI: A Unifying Theory
Categorical Foundations of Explainable AI: A Unifying Theory
Pietro Barbiero
S. Fioravanti
Francesco Giannini
Alberto Tonda
Pietro Lio
Elena Di Lavore
XAI
30
2
0
27 Apr 2023
Graph Convolutional Neural Networks as Parametric CoKleisli morphisms
Graph Convolutional Neural Networks as Parametric CoKleisli morphisms
Bruno Gavranović
M. Villani
GNN
89
0
0
01 Dec 2022
Space-time tradeoffs of lenses and optics via higher category theory
Space-time tradeoffs of lenses and optics via higher category theory
Bruno Gavranović
16
5
0
19 Sep 2022
Compositional Active Inference II: Polynomial Dynamics. Approximate
  Inference Doctrines
Compositional Active Inference II: Polynomial Dynamics. Approximate Inference Doctrines
T. S. C. Smithe
32
1
0
25 Aug 2022
Diegetic Representation of Feedback in Open Games
Diegetic Representation of Feedback in Open Games
Matteo Capucci
22
5
0
24 Jun 2022
A Probabilistic Generative Model of Free Categories
A Probabilistic Generative Model of Free Categories
Eli Sennesh
T. Xu
Y. Maruyama
16
0
0
09 May 2022
Categories of Differentiable Polynomial Circuits for Machine Learning
Categories of Differentiable Polynomial Circuits for Machine Learning
Paul W. Wilson
Fabio Zanasi
21
6
0
12 Mar 2022
A category theory framework for Bayesian learning
A category theory framework for Bayesian learning
Kotaro Kamiya
John Welliaveetil
BDL
6
2
0
29 Nov 2021
Deep neural networks as nested dynamical systems
Deep neural networks as nested dynamical systems
David I. Spivak
Timothy Hosgood
13
1
0
01 Nov 2021
Generalized Optimization: A First Step Towards Category Theoretic
  Learning Theory
Generalized Optimization: A First Step Towards Category Theoretic Learning Theory
Dan Shiebler
35
2
0
20 Sep 2021
Category Theory in Machine Learning
Category Theory in Machine Learning
Dan Shiebler
Bruno Gavranović
Paul W. Wilson
24
31
0
13 Jun 2021
Categorical composable cryptography
Categorical composable cryptography
Anne Broadbent
M. Karvonen
31
7
0
12 May 2021
Diagrammatic Differentiation for Quantum Machine Learning
Diagrammatic Differentiation for Quantum Machine Learning
Alexis Toumi
Richie Yeung
G. Felice
30
20
0
14 Mar 2021
Reverse Derivative Ascent: A Categorical Approach to Learning Boolean
  Circuits
Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits
Paul W. Wilson
Fabio Zanasi
41
15
0
26 Jan 2021
Categorical Stochastic Processes and Likelihood
Categorical Stochastic Processes and Likelihood
Dan Shiebler
8
9
0
10 May 2020
1