Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.01931
Cited By
Categorical Foundations of Gradient-Based Learning
2 March 2021
Geoffrey S. H. Cruttwell
Bruno Gavranović
Neil Ghani
Paul W. Wilson
Fabio Zanasi
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Categorical Foundations of Gradient-Based Learning"
29 / 29 papers shown
Title
Accelerating Machine Learning Systems via Category Theory: Applications to Spherical Attention for Gene Regulatory Networks
Vincent Abbott
Kotaro Kamiya
Gerard Glowacki
Yu Atsumi
Gioele Zardini
Yoshihiro Maruyama
29
0
0
14 May 2025
Logic Explanation of AI Classifiers by Categorical Explaining Functors
S. Fioravanti
Francesco Giannini
Paolo Frazzetto
Fabio Zanasi
Pietro Barbiero
54
0
0
20 Mar 2025
Reduce, Reuse, Recycle: Categories for Compositional Reinforcement Learning
Georgios Bakirtzis
M. Savvas
Ruihan Zhao
Sandeep P. Chinchali
Ufuk Topcu
36
2
0
23 Aug 2024
On the Anatomy of Attention
Nikhil Khatri
Tuomas Laakkonen
Jonathon Liu
Vincent Wang-Ma'scianica
3DV
48
1
0
02 Jul 2024
A Pattern Language for Machine Learning Tasks
Benjamin Rodatz
Ian Fan
Tuomas Laakkonen
Neil John Ortega
Thomas Hoffman
Vincent Wang-Ma'scianica
56
3
0
02 Jul 2024
Reinforcement Learning in Categorical Cybernetics
Jules Hedges
Riu Rodríguez Sakamoto
40
3
0
03 Apr 2024
Deep Learning with Parametric Lenses
Geoffrey S. H. Cruttwell
Bruno Gavranović
Neil Ghani
Paul W. Wilson
Fabio Zanasi
33
2
0
30 Mar 2024
Generalized Gradient Descent is a Hypergraph Functor
Tyler Hanks
Matthew Klawonn
James Fairbanks
27
0
0
28 Mar 2024
The Topos of Transformer Networks
Mattia Jacopo Villani
Peter McBurney
37
0
0
27 Mar 2024
Pooling Image Datasets With Multiple Covariate Shift and Imbalance
Sotirios Panagiotis Chytas
Vishnu Suresh Lokhande
Peiran Li
Vikas Singh
OOD
38
0
0
05 Mar 2024
Position: Categorical Deep Learning is an Algebraic Theory of All Architectures
Bruno Gavranovic
Paul Lessard
Andrew Dudzik
Tamara von Glehn
J. G. Araújo
Petar Velickovic
40
8
0
23 Feb 2024
Neural Circuit Diagrams: Robust Diagrams for the Communication, Implementation, and Analysis of Deep Learning Architectures
Vincent Abbott
40
5
0
08 Feb 2024
Enriching Disentanglement: From Logical Definitions to Quantitative Metrics
Yivan Zhang
Masashi Sugiyama
22
1
0
19 May 2023
The Compositional Structure of Bayesian Inference
Dylan Braithwaite
Jules Hedges
T. S. C. Smithe
22
7
0
10 May 2023
Categorical Foundations of Explainable AI: A Unifying Theory
Pietro Barbiero
S. Fioravanti
Francesco Giannini
Alberto Tonda
Pietro Lio'
Elena Di Lavore
XAI
30
2
0
27 Apr 2023
Graph Convolutional Neural Networks as Parametric CoKleisli morphisms
Bruno Gavranović
M. Villani
GNN
86
0
0
01 Dec 2022
Space-time tradeoffs of lenses and optics via higher category theory
Bruno Gavranović
16
5
0
19 Sep 2022
Compositional Active Inference II: Polynomial Dynamics. Approximate Inference Doctrines
T. S. C. Smithe
30
1
0
25 Aug 2022
Diegetic Representation of Feedback in Open Games
Matteo Capucci
20
5
0
24 Jun 2022
A Probabilistic Generative Model of Free Categories
Eli Sennesh
T. Xu
Y. Maruyama
16
0
0
09 May 2022
Categories of Differentiable Polynomial Circuits for Machine Learning
Paul W. Wilson
Fabio Zanasi
18
6
0
12 Mar 2022
A category theory framework for Bayesian learning
Kotaro Kamiya
John Welliaveetil
BDL
4
2
0
29 Nov 2021
Deep neural networks as nested dynamical systems
David I. Spivak
Timothy Hosgood
11
1
0
01 Nov 2021
Generalized Optimization: A First Step Towards Category Theoretic Learning Theory
Dan Shiebler
32
2
0
20 Sep 2021
Category Theory in Machine Learning
Dan Shiebler
Bruno Gavranović
Paul W. Wilson
21
31
0
13 Jun 2021
Categorical composable cryptography
Anne Broadbent
M. Karvonen
26
7
0
12 May 2021
Diagrammatic Differentiation for Quantum Machine Learning
Alexis Toumi
Richie Yeung
G. Felice
30
20
0
14 Mar 2021
Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits
Paul W. Wilson
Fabio Zanasi
41
15
0
26 Jan 2021
Categorical Stochastic Processes and Likelihood
Dan Shiebler
6
9
0
10 May 2020
1