Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.01550
Cited By
v1
v2
v3 (latest)
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
2 March 2021
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Label-Imbalanced and Group-Sensitive Classification under Overparameterization"
40 / 90 papers shown
Title
A Continuous-Time View of Early Stopping for Least Squares
Alnur Ali
J. Zico Kolter
Robert Tibshirani
67
97
0
23 Oct 2018
Does data interpolation contradict statistical optimality?
M. Belkin
Alexander Rakhlin
Alexandre B. Tsybakov
82
220
0
25 Jun 2018
Stochastic Gradient Descent on Separable Data: Exact Convergence with a Fixed Learning Rate
Mor Shpigel Nacson
Nathan Srebro
Daniel Soudry
FedML
MLT
80
102
0
05 Jun 2018
Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization
Navid Azizan
B. Hassibi
48
63
0
04 Jun 2018
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
MDE
124
413
0
01 Jun 2018
The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression
Emmanuel J. Candes
Pragya Sur
66
141
0
25 Apr 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
103
862
0
18 Apr 2018
Risk and parameter convergence of logistic regression
Ziwei Ji
Matus Telgarsky
73
130
0
20 Mar 2018
A modern maximum-likelihood theory for high-dimensional logistic regression
Pragya Sur
Emmanuel J. Candes
64
288
0
19 Mar 2018
Convergence of Gradient Descent on Separable Data
Mor Shpigel Nacson
Jason D. Lee
Suriya Gunasekar
Pedro H. P. Savarese
Nathan Srebro
Daniel Soudry
76
169
0
05 Mar 2018
Empirical Risk Minimization under Fairness Constraints
Michele Donini
L. Oneto
Shai Ben-David
John Shawe-Taylor
Massimiliano Pontil
FaML
78
445
0
23 Feb 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
70
420
0
05 Feb 2018
A Precise Analysis of PhaseMax in Phase Retrieval
Fariborz Salehi
Ehsan Abbasi
B. Hassibi
41
22
0
20 Jan 2018
Additive Margin Softmax for Face Verification
Feng Wang
Weiyang Liu
Haijun Liu
Jian Cheng
CVBM
97
1,274
0
17 Jan 2018
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
161
923
0
27 Oct 2017
Spectral Algorithms for Computing Fair Support Vector Machines
Matt Olfat
A. Aswani
FaML
49
33
0
16 Oct 2017
A systematic study of the class imbalance problem in convolutional neural networks
Mateusz Buda
A. Maki
Maciej A. Mazurowski
221
2,370
0
15 Oct 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,862
0
14 Jun 2017
Does Distributionally Robust Supervised Learning Give Robust Classifiers?
Weihua Hu
Gang Niu
Issei Sato
Masashi Sugiyama
OOD
65
60
0
07 Nov 2016
Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
201
1,213
0
26 Oct 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
233
4,330
0
07 Oct 2016
Inherent Trade-Offs in the Fair Determination of Risk Scores
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
122
1,775
0
19 Sep 2016
Finite Sample Analysis of Approximate Message Passing Algorithms
Cynthia Rush
R. Venkataramanan
81
59
0
06 Jun 2016
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Lisha Li
Kevin Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
227
2,334
0
21 Mar 2016
Precise Error Analysis of Regularized M-estimators in High-dimensions
Christos Thrampoulidis
Ehsan Abbasi
B. Hassibi
194
222
0
23 Jan 2016
Factors in Finetuning Deep Model for object detection
Wanli Ouyang
Xiaogang Wang
Cong Zhang
Xiaokang Yang
55
190
0
20 Jan 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Universality laws for randomized dimension reduction, with applications
Samet Oymak
J. Tropp
79
110
0
30 Nov 2015
Cost Sensitive Learning of Deep Feature Representations from Imbalanced Data
Salman H. Khan
Munawar Hayat
Bennamoun
Ferdous Sohel
R. Togneri
74
885
0
14 Aug 2015
The LASSO with Non-linear Measurements is Equivalent to One With Linear Measurements
Christos Thrampoulidis
Ehsan Abbasi
B. Hassibi
102
117
0
06 Jun 2015
Variance Breakdown of Huber (M)-estimators:
n
/
p
→
m
∈
(
1
,
∞
)
n/p \rightarrow m \in (1,\infty)
n
/
p
→
m
∈
(
1
,
∞
)
D. Donoho
Andrea Montanari
126
14
0
06 Mar 2015
The Squared-Error of Generalized LASSO: A Precise Analysis
Samet Oymak
Christos Thrampoulidis
B. Hassibi
148
131
0
04 Nov 2013
High Dimensional Robust M-Estimation: Asymptotic Variance via Approximate Message Passing
D. Donoho
Andrea Montanari
229
222
0
28 Oct 2013
Early stopping and non-parametric regression: An optimal data-dependent stopping rule
Garvesh Raskutti
Martin J. Wainwright
Bin Yu
119
299
0
15 Jun 2013
A framework to characterize performance of LASSO algorithms
M. Stojnic
280
128
0
29 Mar 2013
Accurate Prediction of Phase Transitions in Compressed Sensing via a Connection to Minimax Denoising
D. Donoho
Iain M. Johnstone
Andrea Montanari
127
180
0
04 Nov 2011
The Convex Geometry of Linear Inverse Problems
V. Chandrasekaran
Benjamin Recht
P. Parrilo
A. Willsky
211
1,341
0
03 Dec 2010
The LASSO risk for gaussian matrices
Mohsen Bayati
Andrea Montanari
186
319
0
16 Aug 2010
The Noise-Sensitivity Phase Transition in Compressed Sensing
D. Donoho
A. Maleki
Andrea Montanari
101
382
0
08 Apr 2010
Message Passing Algorithms for Compressed Sensing
D. Donoho
A. Maleki
Andrea Montanari
108
2,362
0
21 Jul 2009
Previous
1
2