ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.02106
27
14

Variance Breakdown of Huber (M)-estimators: n/p→m∈(1,∞)n/p \rightarrow m \in (1,\infty)n/p→m∈(1,∞)

6 March 2015
D. Donoho
Andrea Montanari
ArXivPDFHTML
Abstract

A half century ago, Huber evaluated the minimax asymptotic variance in scalar location estimation, min⁡ψmax⁡F∈FϵV(ψ,F)=1I(Fϵ∗) \min_\psi \max_{F \in {\cal F}_\epsilon} V(\psi, F) = \frac{1}{I(F_\epsilon^*)} minψ​maxF∈Fϵ​​V(ψ,F)=I(Fϵ∗​)1​, where V(ψ,F)V(\psi,F)V(ψ,F) denotes the asymptotic variance of the (M)(M)(M)-estimator for location with score function ψ\psiψ, and I(Fϵ∗)I(F_\epsilon^*)I(Fϵ∗​) is the minimal Fisher information min⁡FϵI(F) \min_{{\cal F}_\epsilon} I(F)minFϵ​​I(F) over the class of ϵ\epsilonϵ-Contaminated Normal distributions. We consider the linear regression model Y=Xθ0+WY = X\theta_0 + WY=Xθ0​+W, Wi∼i.i.d.FW_i\sim_{\text{i.i.d.}}FWi​∼i.i.d.​F, and iid Normal predictors Xi,jX_{i,j}Xi,j​, working in the high-dimensional-limit asymptotic where the number nnn of observations and ppp of variables both grow large, while n/p→m∈(1,∞)n/p \rightarrow m \in (1,\infty)n/p→m∈(1,∞); hence mmm plays the role of `asymptotic number of observations per parameter estimated'. Let Vm(ψ,F)V_m(\psi,F)Vm​(ψ,F) denote the per-coordinate asymptotic variance of the (M)(M)(M)-estimator of regression in the n/p→mn/p \rightarrow mn/p→m regime. Then Vm≠VV_m \neq VVm​=V; however Vm→VV_m \rightarrow VVm​→V as m→∞m \rightarrow \inftym→∞. In this paper we evaluate the minimax asymptotic variance of the Huber (M)(M)(M)-estimate. The statistician minimizes over the family (ψλ)λ>0(\psi_\lambda)_{\lambda > 0}(ψλ​)λ>0​ of all tunings of Huber (M)(M)(M)-estimates of regression, and Nature maximizes over gross-error contaminations F∈FϵF \in {\cal F}_\epsilonF∈Fϵ​. Suppose that I(Fϵ∗)⋅m>1I(F_\epsilon^*) \cdot m > 1I(Fϵ∗​)⋅m>1. Then min⁡λmax⁡F∈FϵVm(ψλ,F)=1I(Fϵ∗)−1/m \min_\lambda \max_{F \in {\cal F}_\epsilon} V_m(\psi_\lambda, F) = \frac{1}{I(F_\epsilon^*) - 1/m} minλ​maxF∈Fϵ​​Vm​(ψλ​,F)=I(Fϵ∗​)−1/m1​. Strikingly, if I(Fϵ∗)⋅m≤1I(F_\epsilon^*) \cdot m \leq 1I(Fϵ∗​)⋅m≤1, then the minimax asymptotic variance is +∞+\infty+∞. The breakdown point is where the Fisher information per parameter equals unity.

View on arXiv
Comments on this paper