ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.10867
  4. Cited By
Linear unit-tests for invariance discovery

Linear unit-tests for invariance discovery

22 February 2021
Benjamin Aubin
A. Slowik
Martín Arjovsky
Léon Bottou
David Lopez-Paz
    OOD
ArXivPDFHTML

Papers citing "Linear unit-tests for invariance discovery"

13 / 13 papers shown
Title
Towards a Better Evaluation of Out-of-Domain Generalization
Towards a Better Evaluation of Out-of-Domain Generalization
Duhun Hwang
Suhyun Kang
Moonjung Eo
Jimyeong Kim
Wonjong Rhee
64
0
0
30 May 2024
Spuriosity Rankings for Free: A Simple Framework for Last Layer
  Retraining Based on Object Detection
Spuriosity Rankings for Free: A Simple Framework for Last Layer Retraining Based on Object Detection
Mohammad Azizmalayeri
Reza Abbasi
Amir Hosein Haji Mohammad Rezaie
Reihaneh Zohrabi
Mahdi Amiri
M. T. Manzuri
M. Rohban
19
0
0
31 Oct 2023
VNE: An Effective Method for Improving Deep Representation by
  Manipulating Eigenvalue Distribution
VNE: An Effective Method for Improving Deep Representation by Manipulating Eigenvalue Distribution
Jaeill Kim
Suhyun Kang
Duhun Hwang
Jungwook Shin
Wonjong Rhee
DRL
13
21
0
04 Apr 2023
Decorr: Environment Partitioning for Invariant Learning and OOD
  Generalization
Decorr: Environment Partitioning for Invariant Learning and OOD Generalization
Yufan Liao
Qi Wu
Zhaodi Wu
Xing Yan
13
4
0
18 Nov 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious
  Correlations
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
56
320
0
06 Apr 2022
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series
Jean-Christophe Gagnon-Audet
Kartik Ahuja
Mohammad Javad Darvishi Bayazi
Pooneh Mousavi
G. Dumas
Irina Rish
OOD
CML
AI4TS
37
29
0
18 Mar 2022
Provable Domain Generalization via Invariant-Feature Subspace Recovery
Provable Domain Generalization via Invariant-Feature Subspace Recovery
Haoxiang Wang
Haozhe Si
Bo-wen Li
Han Zhao
OOD
67
33
0
30 Jan 2022
Conditional entropy minimization principle for learning domain invariant
  representation features
Conditional entropy minimization principle for learning domain invariant representation features
Thuan Q. Nguyen
Boyang Lyu
Prakash Ishwar
matthias. scheutz
Shuchin Aeron
OOD
34
7
0
25 Jan 2022
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
63
519
0
31 Aug 2021
Iterative Feature Matching: Toward Provable Domain Generalization with
  Logarithmic Environments
Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments
Yining Chen
Elan Rosenfeld
Mark Sellke
Tengyu Ma
Andrej Risteski
OOD
33
33
0
18 Jun 2021
On Invariance Penalties for Risk Minimization
On Invariance Penalties for Risk Minimization
Kia Khezeli
Arno Blaas
Frank Soboczenski
N. Chia
John Kalantari
20
16
0
17 Jun 2021
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
15
253
0
11 Jun 2021
When is invariance useful in an Out-of-Distribution Generalization
  problem ?
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
34
65
0
04 Aug 2020
1