ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.10395
  4. Cited By
On Calibration and Out-of-domain Generalization

On Calibration and Out-of-domain Generalization

20 February 2021
Yoav Wald
Amir Feder
D. Greenfeld
Uri Shalit
    OODD
ArXivPDFHTML

Papers citing "On Calibration and Out-of-domain Generalization"

36 / 36 papers shown
Title
Partial Transportability for Domain Generalization
Partial Transportability for Domain Generalization
Kasra Jalaldoust
Alexis Bellot
Elias Bareinboim
OOD
77
5
0
30 Mar 2025
FairDropout: Using Example-Tied Dropout to Enhance Generalization of Minority Groups
Géraldin Nanfack
Eugene Belilovsky
59
0
0
10 Feb 2025
Calibrating Bayesian Learning via Regularization, Confidence Minimization, and Selective Inference
Calibrating Bayesian Learning via Regularization, Confidence Minimization, and Selective Inference
Jiayi Huang
Sangwoo Park
Osvaldo Simeone
94
2
0
03 Jan 2025
Invariant Correlation of Representation with Label: Enhancing Domain Generalization in Noisy Environments
Invariant Correlation of Representation with Label: Enhancing Domain Generalization in Noisy Environments
Gaojie Jin
Ronghui Mu
Xinping Yi
Xiaowei Huang
Lijun Zhang
67
0
0
01 Jul 2024
Learning Invariant Causal Mechanism from Vision-Language Models
Learning Invariant Causal Mechanism from Vision-Language Models
Zeen Song
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Wenwen Qiang
CML
BDL
VLM
37
0
0
24 May 2024
Data Augmentations for Improved (Large) Language Model Generalization
Data Augmentations for Improved (Large) Language Model Generalization
Amir Feder
Yoav Wald
Claudia Shi
S. Saria
David M. Blei
OOD
CML
32
7
0
19 Oct 2023
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
Hiroki Naganuma
Ryuichiro Hataya
Kotaro Yoshida
Ioannis Mitliagkas
OODD
89
1
0
17 Jul 2023
Nonparametric Identifiability of Causal Representations from Unknown
  Interventions
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
18
56
0
01 Jun 2023
An Invariant Learning Characterization of Controlled Text Generation
An Invariant Learning Characterization of Controlled Text Generation
Carolina Zheng
Claudia Shi
Keyon Vafa
Amir Feder
David M. Blei
OOD
24
8
0
31 May 2023
Transfer Knowledge from Head to Tail: Uncertainty Calibration under
  Long-tailed Distribution
Transfer Knowledge from Head to Tail: Uncertainty Calibration under Long-tailed Distribution
Jiahao Chen
Bingyue Su
30
10
0
13 Apr 2023
A principled approach to model validation in domain generalization
A principled approach to model validation in domain generalization
Boyang Lyu
Thuan Q. Nguyen
matthias. scheutz
Prakash Ishwar
Shuchin Aeron
36
2
0
02 Apr 2023
DOMINO: Domain-aware Loss for Deep Learning Calibration
DOMINO: Domain-aware Loss for Deep Learning Calibration
Skylar E. Stolte
Kyle Volle
A. Indahlastari
Alejandro Albizu
A. Woods
Kevin Brink
Matthew Hale
R. Fang
MedIm
11
1
0
10 Feb 2023
Learning useful representations for shifting tasks and distributions
Learning useful representations for shifting tasks and distributions
Jianyu Zhang
Léon Bottou
OOD
31
13
0
14 Dec 2022
Malign Overfitting: Interpolation Can Provably Preclude Invariance
Malign Overfitting: Interpolation Can Provably Preclude Invariance
Yoav Wald
G. Yona
Uri Shalit
Y. Carmon
17
5
0
28 Nov 2022
Uncertainty Quantification with Pre-trained Language Models: A
  Large-Scale Empirical Analysis
Uncertainty Quantification with Pre-trained Language Models: A Large-Scale Empirical Analysis
Yuxin Xiao
Paul Pu Liang
Umang Bhatt
W. Neiswanger
Ruslan Salakhutdinov
Louis-Philippe Morency
175
86
0
10 Oct 2022
A Comprehensive Review of Trends, Applications and Challenges In
  Out-of-Distribution Detection
A Comprehensive Review of Trends, Applications and Challenges In Out-of-Distribution Detection
Navid Ghassemi
E. F. Ersi
AAML
OODD
20
4
0
26 Sep 2022
Calibrated Selective Classification
Calibrated Selective Classification
Adam Fisch
Tommi Jaakkola
Regina Barzilay
21
16
0
25 Aug 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
51
71
0
19 Jul 2022
Calibrated ensembles can mitigate accuracy tradeoffs under distribution
  shift
Calibrated ensembles can mitigate accuracy tradeoffs under distribution shift
Ananya Kumar
Tengyu Ma
Percy Liang
Aditi Raghunathan
UQCV
OODD
OOD
39
38
0
18 Jul 2022
Predicting is not Understanding: Recognizing and Addressing
  Underspecification in Machine Learning
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
32
29
0
06 Jul 2022
Invariant and Transportable Representations for Anti-Causal Domain
  Shifts
Invariant and Transportable Representations for Anti-Causal Domain Shifts
Yibo Jiang
Victor Veitch
OOD
123
32
0
04 Jul 2022
When Does Group Invariant Learning Survive Spurious Correlations?
When Does Group Invariant Learning Survive Spurious Correlations?
Yimeng Chen
Ruibin Xiong
Zhiming Ma
Yanyan Lan
OOD
CML
19
20
0
29 Jun 2022
Learning to Detect with Constant False Alarm Rate
Learning to Detect with Constant False Alarm Rate
Tzvi Diskin
Uri Okun
A. Wiesel
14
7
0
12 Jun 2022
Sample-Efficient Reinforcement Learning in the Presence of Exogenous
  Information
Sample-Efficient Reinforcement Learning in the Presence of Exogenous Information
Yonathan Efroni
Dylan J. Foster
Dipendra Kumar Misra
A. Krishnamurthy
John Langford
OffRL
29
25
0
09 Jun 2022
The Missing Invariance Principle Found -- the Reciprocal Twin of
  Invariant Risk Minimization
The Missing Invariance Principle Found -- the Reciprocal Twin of Invariant Risk Minimization
Dongsung Huh
A. Baidya
OOD
22
8
0
29 May 2022
Estimating Model Performance on External Samples from Their Limited
  Statistical Characteristics
Estimating Model Performance on External Samples from Their Limited Statistical Characteristics
T. El-Hay
C. Yanover
OOD
6
1
0
28 Feb 2022
Robust Hybrid Learning With Expert Augmentation
Robust Hybrid Learning With Expert Augmentation
Antoine Wehenkel
Jens Behrmann
Hsiang Hsu
Guillermo Sapiro
Gilles Louppe and
J. Jacobsen
21
8
0
08 Feb 2022
Fishr: Invariant Gradient Variances for Out-of-Distribution
  Generalization
Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
Alexandre Ramé
Corentin Dancette
Matthieu Cord
OOD
38
204
0
07 Sep 2021
Causal Inference in Natural Language Processing: Estimation, Prediction,
  Interpretation and Beyond
Causal Inference in Natural Language Processing: Estimation, Prediction, Interpretation and Beyond
Amir Feder
Katherine A. Keith
Emaad A. Manzoor
Reid Pryzant
Dhanya Sridhar
...
Roi Reichart
Margaret E. Roberts
Brandon M Stewart
Victor Veitch
Diyi Yang
CML
32
234
0
02 Sep 2021
A comparison of approaches to improve worst-case predictive model
  performance over patient subpopulations
A comparison of approaches to improve worst-case predictive model performance over patient subpopulations
Stephen R. Pfohl
Haoran Zhang
Yizhe Xu
Agata Foryciarz
Marzyeh Ghassemi
N. Shah
OOD
21
22
0
27 Aug 2021
Evading the Simplicity Bias: Training a Diverse Set of Models Discovers
  Solutions with Superior OOD Generalization
Evading the Simplicity Bias: Training a Diverse Set of Models Discovers Solutions with Superior OOD Generalization
Damien Teney
Ehsan Abbasnejad
Simon Lucey
A. Hengel
23
86
0
12 May 2021
Generalizing to Unseen Domains: A Survey on Domain Generalization
Generalizing to Unseen Domains: A Survey on Domain Generalization
Jindong Wang
Cuiling Lan
Chang-Shu Liu
Yidong Ouyang
Tao Qin
Wang Lu
Yiqiang Chen
Wenjun Zeng
Philip S. Yu
OOD
54
1,169
0
02 Mar 2021
PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen
  Domains
PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains
Eyal Ben-David
Nadav Oved
Roi Reichart
VLM
OOD
14
88
0
24 Feb 2021
Does Invariant Risk Minimization Capture Invariance?
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
196
125
0
04 Jan 2021
Calibration of Pre-trained Transformers
Calibration of Pre-trained Transformers
Shrey Desai
Greg Durrett
UQLM
243
289
0
17 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
1