ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.08850
  4. Cited By
Contrastive Learning Inverts the Data Generating Process
v1v2v3v4 (latest)

Contrastive Learning Inverts the Data Generating Process

17 February 2021
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
    SSL
ArXiv (abs)PDFHTML

Papers citing "Contrastive Learning Inverts the Data Generating Process"

41 / 41 papers shown
Title
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
180
1
0
17 Apr 2025
Shared Global and Local Geometry of Language Model Embeddings
Shared Global and Local Geometry of Language Model Embeddings
Andrew Lee
Melanie Weber
F. Viégas
Martin Wattenberg
FedML
113
7
0
27 Mar 2025
Sample-efficient Learning of Concepts with Theoretical Guarantees: from Data to Concepts without Interventions
Sample-efficient Learning of Concepts with Theoretical Guarantees: from Data to Concepts without Interventions
H. Fokkema
T. Erven
Sara Magliacane
131
2
0
10 Feb 2025
Cross-Entropy Is All You Need To Invert the Data Generating Process
Cross-Entropy Is All You Need To Invert the Data Generating Process
Patrik Reizinger
Alice Bizeul
Attila Juhos
Julia E. Vogt
Randall Balestriero
Wieland Brendel
David Klindt
SSLOODBDLDRL
215
6
0
29 Oct 2024
Formation of Representations in Neural Networks
Formation of Representations in Neural Networks
Liu Ziyin
Isaac Chuang
Tomer Galanti
T. Poggio
235
7
0
03 Oct 2024
InfoNCE: Identifying the Gap Between Theory and Practice
InfoNCE: Identifying the Gap Between Theory and Practice
E. Rusak
Patrik Reizinger
Attila Juhos
Oliver Bringmann
Roland S. Zimmermann
Wieland Brendel
111
10
0
28 Jun 2024
Learning Invariant Causal Mechanism from Vision-Language Models
Learning Invariant Causal Mechanism from Vision-Language Models
Changwen Zheng
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Jingyao Wang
CMLBDLVLM
110
0
0
24 May 2024
High-Dimension Human Value Representation in Large Language Models
High-Dimension Human Value Representation in Large Language Models
Samuel Cahyawijaya
Delong Chen
Yejin Bang
Leila Khalatbari
Bryan Wilie
Ziwei Ji
Etsuko Ishii
Pascale Fung
189
6
0
11 Apr 2024
CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts
CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts
Yichao Cai
Yuhang Liu
Zhen Zhang
Javen Qinfeng Shi
CLIPVLM
126
8
0
28 Nov 2023
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
121
82
0
27 Oct 2020
Contrastive Learning with Hard Negative Samples
Contrastive Learning with Hard Negative Samples
Joshua Robinson
Ching-Yao Chuang
S. Sra
Stefanie Jegelka
SSL
153
788
0
09 Oct 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
120
134
0
21 Jul 2020
On Linear Identifiability of Learned Representations
On Linear Identifiability of Learned Representations
Geoffrey Roeder
Luke Metz
Diederik P. Kingma
CML
66
85
0
01 Jul 2020
Debiased Contrastive Learning
Debiased Contrastive Learning
Ching-Yao Chuang
Joshua Robinson
Yen-Chen Lin
Antonio Torralba
Stefanie Jegelka
SSL
97
567
0
01 Jul 2020
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
  Representations
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
Alexei Baevski
Henry Zhou
Abdel-rahman Mohamed
Michael Auli
SSL
301
5,849
0
20 Jun 2020
Understanding Contrastive Representation Learning through Alignment and
  Uniformity on the Hypersphere
Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere
Tongzhou Wang
Phillip Isola
SSL
164
1,860
0
20 May 2020
What Makes for Good Views for Contrastive Learning?
What Makes for Good Views for Contrastive Learning?
Yonglong Tian
Chen Sun
Ben Poole
Dilip Krishnan
Cordelia Schmid
Phillip Isola
SSL
118
1,338
0
20 May 2020
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on
  Nonlinear ICA
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA
Ilyes Khemakhem
R. Monti
Diederik P. Kingma
Aapo Hyvarinen
CML
101
114
0
26 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
393
18,897
0
13 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGeOODDRL
244
320
0
07 Feb 2020
Multi-task self-supervised learning for Robust Speech Recognition
Multi-task self-supervised learning for Robust Speech Recognition
Mirco Ravanelli
Jianyuan Zhong
Santiago Pascual
P. Swietojanski
João Monteiro
J. Trmal
Yoshua Bengio
SSL
284
290
0
25 Jan 2020
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
216
12,136
0
13 Nov 2019
vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations
vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations
Alexei Baevski
Steffen Schneider
Michael Auli
SSL
166
667
0
12 Oct 2019
On Mutual Information Maximization for Representation Learning
On Mutual Information Maximization for Representation Learning
Michael Tschannen
Josip Djolonga
Paul Kishan Rubenstein
Sylvain Gelly
Mario Lucic
SSL
184
502
0
31 Jul 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
77
598
0
10 Jul 2019
Contrastive Multiview Coding
Contrastive Multiview Coding
Yonglong Tian
Dilip Krishnan
Phillip Isola
SSL
182
2,412
0
13 Jun 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OODDRL
122
138
0
07 Jun 2019
Learning Representations by Maximizing Mutual Information Across Views
Learning Representations by Maximizing Mutual Information Across Views
Philip Bachman
R. Devon Hjelm
William Buchwalter
SSL
195
1,481
0
03 Jun 2019
Data-Efficient Image Recognition with Contrastive Predictive Coding
Data-Efficient Image Recognition with Contrastive Predictive Coding
Olivier J. Hénaff
A. Srinivas
J. Fauw
Ali Razavi
Carl Doersch
S. M. Ali Eslami
Aaron van den Oord
SSL
144
1,433
0
22 May 2019
A Theoretical Analysis of Contrastive Unsupervised Representation
  Learning
A Theoretical Analysis of Contrastive Unsupervised Representation Learning
Sanjeev Arora
H. Khandeparkar
M. Khodak
Orestis Plevrakis
Nikunj Saunshi
SSL
109
784
0
25 Feb 2019
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
143
1,475
0
29 Nov 2018
Learning deep representations by mutual information estimation and
  maximization
Learning deep representations by mutual information estimation and maximization
R. Devon Hjelm
A. Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
SSLDRL
355
2,675
0
20 Aug 2018
Representation Learning with Contrastive Predictive Coding
Representation Learning with Contrastive Predictive Coding
Aaron van den Oord
Yazhe Li
Oriol Vinyals
DRLSSL
356
10,369
0
10 Jul 2018
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive
  Learning
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning
Aapo Hyvarinen
Hiroaki Sasaki
Richard Turner
OODCML
100
331
0
22 May 2018
Unsupervised Feature Learning via Non-Parametric Instance-level
  Discrimination
Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination
Zhirong Wu
Yuanjun Xiong
Stella X. Yu
Dahua Lin
SSL
185
3,472
0
05 May 2018
An efficient framework for learning sentence representations
An efficient framework for learning sentence representations
Lajanugen Logeswaran
Honglak Lee
90
544
0
07 Mar 2018
Billion-scale similarity search with GPUs
Billion-scale similarity search with GPUs
Jeff Johnson
Matthijs Douze
Hervé Jégou
257
3,741
0
28 Feb 2017
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary
  Visual Reasoning
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
Justin Johnson
B. Hariharan
Laurens van der Maaten
Li Fei-Fei
C. L. Zitnick
Ross B. Girshick
CoGe
319
2,392
0
20 Dec 2016
Unsupervised Feature Extraction by Time-Contrastive Learning and
  Nonlinear ICA
Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA
Aapo Hyvarinen
H. Morioka
CMLOODAI4TS
79
410
0
20 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
1