ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.08380
  4. Cited By
Topological Obstructions to Autoencoding

Topological Obstructions to Autoencoding

16 February 2021
Joshua D. Batson
C. G. Haaf
Yonatan Kahn
Daniel A. Roberts
    AI4CE
ArXivPDFHTML

Papers citing "Topological Obstructions to Autoencoding"

7 / 7 papers shown
Title
Learning Topology-Preserving Data Representations
Learning Topology-Preserving Data Representations
I. Trofimov
D. Cherniavskii
Eduard Tulchinskii
Nikita Balabin
Evgeny Burnaev
S. Barannikov
16
20
0
31 Jan 2023
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
42
113
0
07 Dec 2021
Online-compatible Unsupervised Non-resonant Anomaly Detection
Online-compatible Unsupervised Non-resonant Anomaly Detection
Vinicius Mikuni
Benjamin Nachman
David Shih
25
35
0
11 Nov 2021
Challenges for Unsupervised Anomaly Detection in Particle Physics
Challenges for Unsupervised Anomaly Detection in Particle Physics
Katherine Fraser
S. Homiller
Rashmish K. Mishra
B. Ostdiek
M. Schwartz
DRL
27
43
0
13 Oct 2021
Autoencoders for unsupervised anomaly detection in high energy physics
Autoencoders for unsupervised anomaly detection in high energy physics
Thorben Finke
Michael Krämer
A. Morandini
A. Mück
I. Oleksiyuk
21
83
0
19 Apr 2021
Better Latent Spaces for Better Autoencoders
Better Latent Spaces for Better Autoencoders
B. Dillon
Tilman Plehn
C. Sauer
P. Sorrenson
BDL
DRL
24
55
0
16 Apr 2021
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
J. Collins
P. Martín-Ramiro
Benjamin Nachman
David Shih
24
44
0
05 Apr 2021
1