Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.06794
Cited By
Extending Lagrangian and Hamiltonian Neural Networks with Differentiable Contact Models
12 February 2021
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Extending Lagrangian and Hamiltonian Neural Networks with Differentiable Contact Models"
33 / 33 papers shown
Title
Prof. Robot: Differentiable Robot Rendering Without Static and Self-Collisions
Quanyuan Ruan
Jiabao Lei
Wenhao Yuan
Y. Zhang
Dekun Lu
Guiliang Liu
Kui Jia
95
0
0
14 Mar 2025
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
Katharina Friedl
Noémie Jaquier
Jens Lundell
Tamim Asfour
Danica Kragic
AI4CE
76
0
0
24 Oct 2024
Fast and Feature-Complete Differentiable Physics for Articulated Rigid Bodies with Contact
Keenon Werling
Dalton Omens
Jeongseok Lee
Ionnis Exarchos
Chenxi Liu
PINN
31
80
0
30 Mar 2021
Learning Contact Dynamics using Physically Structured Neural Networks
Andreas Hochlehnert
Alexander Terenin
Steindór Sæmundsson
M. Deisenroth
36
16
0
22 Feb 2021
Benchmarking Energy-Conserving Neural Networks for Learning Dynamics from Data
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
63
47
0
03 Dec 2020
NeuralSim: Augmenting Differentiable Simulators with Neural Networks
Eric Heiden
David Millard
Erwin Coumans
Yizhou Sheng
Gaurav Sukhatme
49
138
0
09 Nov 2020
Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints
Marc Finzi
Ke Alexander Wang
A. Wilson
AI4CE
53
127
0
26 Oct 2020
LagNetViP: A Lagrangian Neural Network for Video Prediction
Christine Allen-Blanchette
Sushant Veer
Anirudha Majumdar
Naomi Ehrich Leonard
64
30
0
24 Oct 2020
Neural Ordinary Differential Equations for Intervention Modeling
Daehoon Gwak
Gyuhyeon Sim
Michael Poli
Stefano Massaroli
Jaegul Choo
Edward Choi
39
20
0
16 Oct 2020
Unsupervised Learning of Lagrangian Dynamics from Images for Prediction and Control
Yaofeng Desmond Zhong
Naomi Ehrich Leonard
DRL
AI4CE
32
43
0
03 Jul 2020
Learning Physical Constraints with Neural Projections
Shuqi Yang
Xingzhe He
Bo Zhu
3DV
AI4CE
69
26
0
23 Jun 2020
Modeling System Dynamics with Physics-Informed Neural Networks Based on Lagrangian Mechanics
Manuel A. Roehrl
Thomas Runkler
Veronika Brandtstetter
Michel Tokic
Stefan Obermayer
PINN
52
79
0
29 May 2020
Learning to Slide Unknown Objects with Differentiable Physics Simulations
Changkyu Song
Abdeslam Boularias
137
39
0
11 May 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
163
426
0
10 Mar 2020
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINN
AI4CE
114
1,065
0
21 Feb 2020
Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
53
79
0
20 Feb 2020
Dissecting Neural ODEs
Stefano Massaroli
Michael Poli
Jinkyoo Park
Atsushi Yamashita
Hajime Asama
78
200
0
19 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
292
42,038
0
03 Dec 2019
Differentiable Convex Optimization Layers
Akshay Agrawal
Brandon Amos
Shane T. Barratt
Stephen P. Boyd
Steven Diamond
Zico Kolter
81
646
0
28 Oct 2019
DiffTaichi: Differentiable Programming for Physical Simulation
Yuanming Hu
Luke Anderson
Tzu-Mao Li
Qi Sun
N. Carr
Jonathan Ragan-Kelley
F. Durand
52
377
0
01 Oct 2019
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
186
223
0
29 Sep 2019
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
83
270
0
26 Sep 2019
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
M. Lutter
Christian Ritter
Jan Peters
PINN
AI4CE
56
374
0
10 Jul 2019
Deep Lagrangian Networks for end-to-end learning of energy-based control for under-actuated systems
M. Lutter
Kim D. Listmann
Jan Peters
PINN
49
71
0
10 Jul 2019
DensePhysNet: Learning Dense Physical Object Representations via Multi-step Dynamic Interactions
Zhenjia Xu
Jiajun Wu
Andy Zeng
J. Tenenbaum
Shuran Song
AI4CE
45
111
0
10 Jun 2019
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
67
876
0
04 Jun 2019
Neural Jump Stochastic Differential Equations
Junteng Jia
Austin R. Benson
BDL
47
222
0
24 May 2019
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
244
5,024
0
19 Jun 2018
Data-Augmented Contact Model for Rigid Body Simulation
Yifeng Jiang
Jiazheng Sun
Chenxi Liu
PINN
45
21
0
11 Mar 2018
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
335
439
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
461
1,405
0
01 Dec 2016
A Differentiable Physics Engine for Deep Learning in Robotics
Jonas Degrave
Michiel Hermans
J. Dambre
Francis Wyffels
PINN
AI4CE
57
227
0
05 Nov 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
972
149,474
0
22 Dec 2014
1