ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06648
  4. Cited By
A Critical Look at the Consistency of Causal Estimation With Deep Latent
  Variable Models
v1v2v3v4v5 (latest)

A Critical Look at the Consistency of Causal Estimation With Deep Latent Variable Models

12 February 2021
Severi Rissanen
Pekka Marttinen
    CML
ArXiv (abs)PDFHTML

Papers citing "A Critical Look at the Consistency of Causal Estimation With Deep Latent Variable Models"

14 / 14 papers shown
Title
Conformal Convolution and Monte Carlo Meta-learners for Predictive Inference of Individual Treatment Effects
Conformal Convolution and Monte Carlo Meta-learners for Predictive Inference of Individual Treatment Effects
Jef Jonkers
Jarne Verhaeghe
Glenn Van Wallendael
Luc Duchateau
Sofie Van Hoecke
413
2
0
07 Feb 2024
Identifying Causal-Effect Inference Failure with Uncertainty-Aware
  Models
Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models
Andrew Jesson
Sören Mindermann
Uri Shalit
Y. Gal
CML
50
74
0
01 Jul 2020
Deep Structural Causal Models for Tractable Counterfactual Inference
Deep Structural Causal Models for Tractable Counterfactual Inference
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CMLMedIm
106
242
0
11 Jun 2020
MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent
  Variable Models
MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent Variable Models
Imke Mayer
Julie Josse
Félix Raimundo
Jean-Philippe Vert
CML
58
12
0
25 Feb 2020
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
Bin Dai
Ziyu Wang
David Wipf
DRL
75
76
0
23 Dec 2019
Counterfactual Reasoning for Fair Clinical Risk Prediction
Counterfactual Reasoning for Fair Clinical Risk Prediction
Stephen Pfohl
Tony Duan
D. Ding
N. Shah
OODCML
62
58
0
14 Jul 2019
Adapting Neural Networks for the Estimation of Treatment Effects
Adapting Neural Networks for the Estimation of Treatment Effects
Claudia Shi
David M. Blei
Victor Veitch
CML
148
376
0
05 Jun 2019
Lagging Inference Networks and Posterior Collapse in Variational
  Autoencoders
Lagging Inference Networks and Posterior Collapse in Variational Autoencoders
Junxian He
Daniel M. Spokoyny
Graham Neubig
Taylor Berg-Kirkpatrick
BDLDRL
90
273
0
16 Jan 2019
Preventing Posterior Collapse with delta-VAEs
Preventing Posterior Collapse with delta-VAEs
Ali Razavi
Aaron van den Oord
Ben Poole
Oriol Vinyals
DRL
92
171
0
10 Jan 2019
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
131
1,471
0
29 Nov 2018
Fairness Through Causal Awareness: Learning Latent-Variable Models for
  Biased Data
Fairness Through Causal Awareness: Learning Latent-Variable Models for Biased Data
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
61
133
0
07 Sep 2018
Linked Causal Variational Autoencoder for Inferring Paired Spillover
  Effects
Linked Causal Variational Autoencoder for Inferring Paired Spillover Effects
Vineeth Rakesh
Ruocheng Guo
Raha Moraffah
Nitin Agarwal
Huan Liu
CMLBDL
58
45
0
09 Aug 2018
Causal Effect Inference with Deep Latent-Variable Models
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CMLBDL
209
747
0
24 May 2017
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
1