Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.05507
Cited By
On Disentanglement in Gaussian Process Variational Autoencoders
10 February 2021
Simon Bing
Vincent Fortuin
Gunnar Rätsch
CML
CoGe
BDL
DRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On Disentanglement in Gaussian Process Variational Autoencoders"
21 / 21 papers shown
Title
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRL
BDL
61
29
0
26 Oct 2020
Sparse Gaussian Process Variational Autoencoders
Matthew Ashman
Jonathan So
Will Tebbutt
Vincent Fortuin
Michael Pearce
Richard Turner
104
35
0
20 Oct 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
242
320
0
07 Feb 2020
On the Fairness of Disentangled Representations
Francesco Locatello
G. Abbati
Tom Rainforth
Stefan Bauer
Bernhard Schölkopf
Olivier Bachem
FaML
DRL
73
227
0
31 May 2019
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
Sjoerd van Steenkiste
Francesco Locatello
Jürgen Schmidhuber
Olivier Bachem
85
210
0
29 May 2019
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRL
CML
CoGe
94
124
0
03 May 2019
Recent Advances in Autoencoder-Based Representation Learning
Michael Tschannen
Olivier Bachem
Mario Lucic
OOD
SSL
DRL
75
446
0
12 Dec 2018
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
134
1,473
0
29 Nov 2018
Gaussian Process Prior Variational Autoencoders
F. P. Casale
Adrian Dalca
Luca Saglietti
Jennifer Listgarten
Nicolò Fusi
BDL
CML
61
138
0
28 Oct 2018
Disentangled Sequential Autoencoder
Yingzhen Li
Stephan Mandt
CoGe
71
271
0
08 Mar 2018
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
64
1,356
0
16 Feb 2018
Learning Deep Disentangled Embeddings with the F-Statistic Loss
Karl Ridgeway
Michael C. Mozer
FedML
DRL
CoGe
72
218
0
14 Feb 2018
Isolating Sources of Disentanglement in Variational Autoencoders
T. Chen
Xuechen Li
Roger C. Grosse
David Duvenaud
DRL
61
447
0
14 Feb 2018
Building machines that adapt and compute like brains
Brenden M. Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
322
887
0
11 Nov 2017
Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data
Wei-Ning Hsu
Yu Zhang
James R. Glass
BDL
SSL
80
353
0
22 Sep 2017
Dynamic Word Embeddings
Robert Bamler
Stephan Mandt
BDL
216
232
0
27 Feb 2017
A Survey of Inductive Biases for Factorial Representation-Learning
Karl Ridgeway
DRL
CML
68
76
0
15 Dec 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
161
4,238
0
12 Jun 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
298
4,812
0
04 Jan 2016
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
278
12,458
0
24 Jun 2012
1