ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.05346
  4. Cited By
The Hessigheim 3D (H3D) Benchmark on Semantic Segmentation of
  High-Resolution 3D Point Clouds and Textured Meshes from UAV LiDAR and
  Multi-View-Stereo

The Hessigheim 3D (H3D) Benchmark on Semantic Segmentation of High-Resolution 3D Point Clouds and Textured Meshes from UAV LiDAR and Multi-View-Stereo

10 February 2021
Michael Kölle
D. Laupheimer
S. Schmohl
Norbert Haala
Franz Rottensteiner
Jan Dirk Wegner
H. Ledoux
    3DPC
    3DV
ArXivPDFHTML

Papers citing "The Hessigheim 3D (H3D) Benchmark on Semantic Segmentation of High-Resolution 3D Point Clouds and Textured Meshes from UAV LiDAR and Multi-View-Stereo"

10 / 10 papers shown
Title
SUM Parts: Benchmarking Part-Level Semantic Segmentation of Urban Meshes
SUM Parts: Benchmarking Part-Level Semantic Segmentation of Urban Meshes
Weixiao Gao
Liangliang Nan
H. Ledoux
3DV
3DPC
43
0
0
19 Mar 2025
Ground Awareness in Deep Learning for Large Outdoor Point Cloud Segmentation
Ground Awareness in Deep Learning for Large Outdoor Point Cloud Segmentation
Kevin Qiu
Dimitri Bulatov
Dorota Iwaszczuk
3DPC
58
0
0
30 Jan 2025
Deep Learning on 3D Semantic Segmentation: A Detailed Review
Deep Learning on 3D Semantic Segmentation: A Detailed Review
Thodoris Betsas
Andreas Georgopoulos
Anastasios Doulamis
Pierre Grussenmeyer
3DV
3DPC
44
1
0
04 Nov 2024
HRHD-HK: A benchmark dataset of high-rise and high-density urban scenes
  for 3D semantic segmentation of photogrammetric point clouds
HRHD-HK: A benchmark dataset of high-rise and high-density urban scenes for 3D semantic segmentation of photogrammetric point clouds
Maosu Li
Yijie Wu
A. G. Yeh
Fan Xue
3DV
3DPC
34
3
0
16 Jul 2023
Effective Utilisation of Multiple Open-Source Datasets to Improve
  Generalisation Performance of Point Cloud Segmentation Models
Effective Utilisation of Multiple Open-Source Datasets to Improve Generalisation Performance of Point Cloud Segmentation Models
Matthew Howe
Boris Repasky
Timothy Payne
3DPC
30
0
0
29 Nov 2022
One Class One Click: Quasi Scene-level Weakly Supervised Point Cloud
  Semantic Segmentation with Active Learning
One Class One Click: Quasi Scene-level Weakly Supervised Point Cloud Semantic Segmentation with Active Learning
Puzuo Wang
W. Yao
Jiejing Shao
33
17
0
23 Nov 2022
STPLS3D: A Large-Scale Synthetic and Real Aerial Photogrammetry 3D Point
  Cloud Dataset
STPLS3D: A Large-Scale Synthetic and Real Aerial Photogrammetry 3D Point Cloud Dataset
Meida Chen
Qingyong Hu
Zifan Yu
Hugues Thomas
Andrew Feng
Yu Hou
Kyle McCullough
Fengbo Ren
L. Soibelman
SLR
AI4TS
16
63
0
17 Mar 2022
SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
  Clouds
SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds
Qingyong Hu
Bo Yang
Sheikh Khalid
W. Xiao
Niki Trigoni
Andrew Markham
3DPC
26
85
0
12 Jan 2022
3D Instance Segmentation of MVS Buildings
3D Instance Segmentation of MVS Buildings
Jiazhou Chen
Yanghui Xu
Shufang Lu
Ronghua Liang
Liangliang Nan
ISeg
3DV
27
23
0
18 Dec 2021
A new weakly supervised approach for ALS point cloud semantic
  segmentation
A new weakly supervised approach for ALS point cloud semantic segmentation
Puzuo Wang
W. Yao
3DPC
21
48
0
04 Oct 2021
1