Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.04877
Cited By
Noisy Recurrent Neural Networks
9 February 2021
Soon Hoe Lim
N. Benjamin Erichson
Liam Hodgkinson
Michael W. Mahoney
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Noisy Recurrent Neural Networks"
50 / 64 papers shown
Title
Robust Asymmetric Heterogeneous Federated Learning with Corrupted Clients
Xiuwen Fang
Mang Ye
Di Lin
FedML
161
1
0
12 Mar 2025
MeMo: Meaningful, Modular Controllers via Noise Injection
Megan Tjandrasuwita
Jie Xu
Armando Solar-Lezama
Wojciech Matusik
59
0
0
24 May 2024
Gated Recurrent Neural Networks with Weighted Time-Delay Feedback
N. Benjamin Erichson
Soon Hoe Lim
Michael W. Mahoney
63
6
0
01 Dec 2022
On the Origin of Implicit Regularization in Stochastic Gradient Descent
Samuel L. Smith
Benoit Dherin
David Barrett
Soham De
MLT
36
203
0
28 Jan 2021
Implicit Bias of Linear RNNs
M Motavali Emami
Mojtaba Sahraee-Ardakan
Parthe Pandit
S. Rangan
A. Fletcher
39
11
0
19 Jan 2021
Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies
T. Konstantin Rusch
Siddhartha Mishra
112
92
0
02 Oct 2020
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
69
134
0
22 Sep 2020
Continuous-in-Depth Neural Networks
A. Queiruga
N. Benjamin Erichson
D. Taylor
Michael W. Mahoney
58
47
0
05 Aug 2020
Explicit Regularisation in Gaussian Noise Injections
A. Camuto
M. Willetts
Umut Simsekli
Stephen J. Roberts
Chris Holmes
47
59
0
14 Jul 2020
On Lyapunov Exponents for RNNs: Understanding Information Propagation Using Dynamical Systems Tools
Ryan H. Vogt
M. P. Touzel
Eli Shlizerman
Guillaume Lajoie
66
42
0
25 Jun 2020
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
Omri Azencot
A. Queiruga
Liam Hodgkinson
Michael W. Mahoney
67
111
0
22 Jun 2020
Understanding Recurrent Neural Networks Using Nonequilibrium Response Theory
Soon Hoe Lim
70
16
0
19 Jun 2020
Deep Adversarial Koopman Model for Reaction-Diffusion systems
K. Balakrishnan
Devesh Upadhyay
48
5
0
09 Jun 2020
Do RNN and LSTM have Long Memory?
Jingyu Zhao
Feiqing Huang
Jia Lv
Yanjie Duan
Zhen Qin
Guodong Li
Guangjian Tian
94
143
0
06 Jun 2020
Optimizing Neural Networks via Koopman Operator Theory
Akshunna S. Dogra
William T. Redman
50
51
0
03 Jun 2020
Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger
James Morrill
James Foster
Terry Lyons
AI4TS
101
472
0
18 May 2020
The Implicit Regularization of Stochastic Gradient Flow for Least Squares
Alnur Ali
Yan Sun
Robert Tibshirani
65
77
0
17 Mar 2020
Dropout: Explicit Forms and Capacity Control
R. Arora
Peter L. Bartlett
Poorya Mianjy
Nathan Srebro
96
38
0
06 Mar 2020
Forecasting Sequential Data using Consistent Koopman Autoencoders
Omri Azencot
N. Benjamin Erichson
Vanessa Lin
Michael W. Mahoney
AI4TS
AI4CE
153
149
0
04 Mar 2020
The Implicit and Explicit Regularization Effects of Dropout
Colin Wei
Sham Kakade
Tengyu Ma
80
117
0
28 Feb 2020
Disentangling Trainability and Generalization in Deep Neural Networks
Lechao Xiao
Jeffrey Pennington
S. Schoenholz
51
34
0
30 Dec 2019
Machine Learning from a Continuous Viewpoint
E. Weinan
Chao Ma
Lei Wu
106
104
0
30 Dec 2019
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
55
78
0
10 Dec 2019
Dynamical System Inspired Adaptive Time Stepping Controller for Residual Network Families
Yibo Yang
Jianlong Wu
Hongyang Li
Xia Li
Tiancheng Shen
Zhouchen Lin
OOD
36
21
0
23 Nov 2019
Learning Compositional Koopman Operators for Model-Based Control
Yunzhu Li
Hao He
Jiajun Wu
Dina Katabi
Antonio Torralba
92
119
0
18 Oct 2019
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
61
217
0
30 Sep 2019
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
209
225
0
29 Sep 2019
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
88
271
0
26 Sep 2019
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
M. Lutter
Christian Ritter
Jan Peters
PINN
AI4CE
58
378
0
10 Jul 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
81
335
0
13 Jun 2019
Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability
Shaowu Pan
Karthik Duraisamy
60
138
0
09 Jun 2019
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
118
894
0
04 Jun 2019
Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction
N. Benjamin Erichson
Michael Muehlebach
Michael W. Mahoney
AI4CE
PINN
56
141
0
26 May 2019
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit
Belinda Tzen
Maxim Raginsky
DiffM
164
209
0
23 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
59
110
0
09 May 2019
Towards Robust ResNet: A Small Step but A Giant Leap
Jingfeng Zhang
Bo Han
L. Wynter
K. H. Low
Mohan Kankanhalli
50
41
0
28 Feb 2019
Deep Variational Koopman Models: Inferring Koopman Observations for Uncertainty-Aware Dynamics Modeling and Control
Jeremy Morton
F. Witherden
Mykel J Kochenderfer
54
47
0
26 Feb 2019
AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks
B. Chang
Minmin Chen
E. Haber
Ed H. Chi
PINN
GNN
102
204
0
26 Feb 2019
Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group
Mario Lezcano Casado
David Martínez-Rubio
48
200
0
24 Jan 2019
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
260
280
0
03 Dec 2018
Stochastic Training of Residual Networks: a Differential Equation Viewpoint
Qi Sun
Yunzhe Tao
Q. Du
47
24
0
01 Dec 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
411
5,103
0
19 Jun 2018
Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks
Minmin Chen
Jeffrey Pennington
S. Schoenholz
SyDa
AI4CE
52
116
0
14 Jun 2018
Stable Recurrent Models
John Miller
Moritz Hardt
51
119
0
25 May 2018
Noisin: Unbiased Regularization for Recurrent Neural Networks
Adji Bousso Dieng
Rajesh Ranganath
Jaan Altosaar
David M. Blei
50
22
0
03 May 2018
Hessian-based Analysis of Large Batch Training and Robustness to Adversaries
Z. Yao
A. Gholami
Qi Lei
Kurt Keutzer
Michael W. Mahoney
63
167
0
22 Feb 2018
Theory of Deep Learning III: explaining the non-overfitting puzzle
T. Poggio
Kenji Kawaguchi
Q. Liao
Brando Miranda
Lorenzo Rosasco
Xavier Boix
Jack Hidary
H. Mhaskar
ODL
55
128
0
30 Dec 2017
Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations
Yiping Lu
Aoxiao Zhong
Quanzheng Li
Bin Dong
210
503
0
27 Oct 2017
Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization
Hyeonwoo Noh
Tackgeun You
Jonghwan Mun
Bohyung Han
NoLa
61
199
0
14 Oct 2017
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Naoya Takeishi
Yoshinobu Kawahara
Takehisa Yairi
46
370
0
12 Oct 2017
1
2
Next