Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.04626
Cited By
Physics-informed neural networks with hard constraints for inverse design
9 February 2021
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics-informed neural networks with hard constraints for inverse design"
50 / 60 papers shown
Title
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Matthias Chung
Bas Peters
Michael Solomon
34
0
0
10 May 2025
Is the end of Insight in Sight ?
J. Tucny
M. Durve
S. Succi
59
0
0
07 May 2025
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
81
0
0
25 Apr 2025
A Probabilistic Neuro-symbolic Layer for Algebraic Constraint Satisfaction
Leander Kurscheidt
Paolo Morettin
Roberto Sebastiani
Andrea Passerini
Antonio Vergari
57
0
0
25 Mar 2025
Implicit Bias in Matrix Factorization and its Explicit Realization in a New Architecture
Yikun Hou
Suvrit Sra
A. Yurtsever
34
0
0
28 Jan 2025
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
77
1
0
15 Dec 2024
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Zekun Shi
Zheyuan Hu
Min-Bin Lin
Kenji Kawaguchi
145
5
0
27 Nov 2024
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
32
2
0
04 Oct 2024
Improved physics-informed neural network in mitigating gradient related failures
Pancheng Niu
Yongming Chen
Jun Guo
Yuqian Zhou
Minfu Feng
Yanchao Shi
PINN
AI4CE
26
0
0
28 Jul 2024
Robust Biharmonic Skinning Using Geometric Fields
Ana Dodik
Vincent Sitzmann
Justin Solomon
Oded Stein
3DH
42
2
0
01 Jun 2024
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
45
6
0
07 May 2024
BiLO: Bilevel Local Operator Learning for PDE inverse problems
Ray Zirui Zhang
Xiaohui Xie
John S. Lowengrub
68
1
0
27 Apr 2024
Neural Parameter Regression for Explicit Representations of PDE Solution Operators
Konrad Mundinger
Max Zimmer
Sebastian Pokutta
50
0
0
19 Mar 2024
Learning solution operators of PDEs defined on varying domains via MIONet
Shanshan Xiao
Pengzhan Jin
Yifa Tang
50
3
0
23 Feb 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
31
17
0
05 Jan 2024
Dynamically configured physics-informed neural network in topology optimization applications
Ji-Cheng Yin
Ziming Wen
Shuhao Li
Yaya Zhang
Hu Wang
AI4CE
PINN
44
4
0
12 Dec 2023
Physics-informed neural networks for transformed geometries and manifolds
Samuel Burbulla
AI4CE
27
0
0
27 Nov 2023
Exact and soft boundary conditions in Physics-Informed Neural Networks for the Variable Coefficient Poisson equation
Sebastian Barschkis
26
1
0
04 Oct 2023
Physics-Informed Neural Networks for an optimal counterdiabatic quantum computation
Antonio Ferrer-Sánchez
Carlos Flores-Garrigós
C. Hernani-Morales
José J. Orquín-Marqués
N. N. Hegade
Alejandro Gomez Cadavid
Iraitz Montalban
Enrique Solano
Yolanda Vives-Gilabert
J. D. Martín-Guerrero
32
2
0
08 Sep 2023
Learning Specialized Activation Functions for Physics-informed Neural Networks
Honghui Wang
Lu Lu
Shiji Song
Gao Huang
PINN
AI4CE
16
11
0
08 Aug 2023
Residual-based attention and connection to information bottleneck theory in PINNs
Sokratis J. Anagnostopoulos
Juan Diego Toscano
Nikos Stergiopulos
George Karniadakis
25
20
0
01 Jul 2023
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
26
10
0
27 Apr 2023
A physics-informed neural network framework for modeling obstacle-related equations
Hamid EL Bahja
J. C. Hauffen
P. Jung
B. Bah
Issa Karambal
PINN
AI4CE
29
3
0
07 Apr 2023
NSGA-PINN: A Multi-Objective Optimization Method for Physics-Informed Neural Network Training
B.-L. Lu
Christian Moya
Guang Lin
PINN
37
11
0
03 Mar 2023
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
35
20
0
03 Mar 2023
Experimental observation on a low-rank tensor model for eigenvalue problems
Jun Hu
Pengzhan Jin
11
2
0
01 Feb 2023
Estimation of fibre architecture and scar in myocardial tissue using electrograms: an in-silico study
Konstantinos Ntagiantas
E. Pignatelli
N. Peters
C. Cantwell
R. Chowdhury
Anil A. Bharath
21
1
0
06 Dec 2022
Neural DAEs: Constrained neural networks
Tue Boesen
E. Haber
Uri M. Ascher
39
3
0
25 Nov 2022
Physics-Informed Koopman Network
Yuying Liu
A. Sholokhov
Hassan Mansour
S. Nabi
AI4CE
31
3
0
17 Nov 2022
Physics-informed neural networks for operator equations with stochastic data
Paul Escapil-Inchauspé
G. A. Ruz
34
2
0
15 Nov 2022
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
26
17
0
27 Oct 2022
A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High Level Accuracy and Efficiency
Weilong Guan
Kai-Ping Yang
Yinsheng Chen
Zhong Guan
PINN
AI4CE
18
12
0
19 Oct 2022
A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs
Songming Liu
Zhongkai Hao
Chengyang Ying
Hang Su
Jun Zhu
Ze Cheng
AI4CE
18
17
0
06 Oct 2022
A Model-Constrained Tangent Slope Learning Approach for Dynamical Systems
Hai V. Nguyen
T. Bui-Thanh
36
2
0
09 Aug 2022
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
Min Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
32
352
0
21 Jul 2022
Learning differentiable solvers for systems with hard constraints
Geoffrey Negiar
Michael W. Mahoney
Aditi S. Krishnapriyan
31
28
0
18 Jul 2022
TT-PINN: A Tensor-Compressed Neural PDE Solver for Edge Computing
Z. Liu
Xinling Yu
Zheng-Wei Zhang
PINN
13
7
0
04 Jul 2022
Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification
Shuheng Liao
Tianju Xue
Jihoon Jeong
Samantha Webster
K. Ehmann
Jian Cao
AI4CE
30
46
0
15 Jun 2022
Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming
Sen Na
Michael W. Mahoney
34
7
0
27 May 2022
Scalable algorithms for physics-informed neural and graph networks
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
PINN
AI4CE
72
40
0
16 May 2022
Physics-informed neural networks for PDE-constrained optimization and control
Jostein Barry-Straume
A. Sarshar
Andrey A. Popov
Adrian Sandu
PINN
AI4CE
29
14
0
06 May 2022
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
R. Mojgani
Maciej Balajewicz
P. Hassanzadeh
PINN
33
45
0
05 May 2022
Improved Training of Physics-Informed Neural Networks with Model Ensembles
Katsiaryna Haitsiukevich
Alexander Ilin
PINN
36
23
0
11 Apr 2022
Sliced gradient-enhanced Kriging for high-dimensional function approximation
Kai Cheng
Ralf Zimmermann
26
7
0
05 Apr 2022
On the Role of Fixed Points of Dynamical Systems in Training Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
36
17
0
25 Mar 2022
Respecting causality is all you need for training physics-informed neural networks
Sizhuang He
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
46
199
0
14 Mar 2022
WaveY-Net: Physics-augmented deep learning for high-speed electromagnetic simulation and optimization
Ming-Keh Chen
Robert Lupoiu
Chenkai Mao
Der-Han Huang
Jiaqi Jiang
P. Lalanne
Jonathan A. Fan
28
19
0
02 Mar 2022
MIONet: Learning multiple-input operators via tensor product
Pengzhan Jin
Shuai Meng
Lu Lu
20
158
0
12 Feb 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,180
0
14 Jan 2022
Physics-enhanced deep surrogates for partial differential equations
R. Pestourie
Youssef Mroueh
Chris Rackauckas
Payel Das
Steven G. Johnson
PINN
AI4CE
25
15
0
10 Nov 2021
1
2
Next