ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03082
  4. Cited By
Achieving Explainability for Plant Disease Classification with
  Disentangled Variational Autoencoders
v1v2v3v4 (latest)

Achieving Explainability for Plant Disease Classification with Disentangled Variational Autoencoders

5 February 2021
Harshana Habaragamuwa
Y. Oishi
Kenichi Tanaka
ArXiv (abs)PDFHTML

Papers citing "Achieving Explainability for Plant Disease Classification with Disentangled Variational Autoencoders"

29 / 29 papers shown
Title
Explainable Deep Learning: A Field Guide for the Uninitiated
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAMLXAI
103
378
0
30 Apr 2020
Concept Whitening for Interpretable Image Recognition
Concept Whitening for Interpretable Image Recognition
Zhi Chen
Yijie Bei
Cynthia Rudin
FAtt
76
320
0
05 Feb 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
121
6,269
0
22 Oct 2019
Interpretable Image Recognition with Hierarchical Prototypes
Interpretable Image Recognition with Hierarchical Prototypes
Peter Hase
Chaofan Chen
Oscar Li
Cynthia Rudin
VLM
83
111
0
25 Jun 2019
Automatic estimation of heading date of paddy rice using deep learning
Automatic estimation of heading date of paddy rice using deep learning
Sai Vikas Desai
V. Balasubramanian
T. Fukatsu
S. Ninomiya
Wei Guo
87
74
0
19 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDLSSLDRL
89
2,354
0
06 Jun 2019
Improving Variational Autoencoder with Deep Feature Consistent and
  Generative Adversarial Training
Improving Variational Autoencoder with Deep Feature Consistent and Generative Adversarial Training
Xianxu Hou
Ke Sun
Linlin Shen
Guoping Qiu
GANDRL
48
53
0
04 Jun 2019
Deep interpretable architecture for plant diseases classification
Deep interpretable architecture for plant diseases classification
Mohammed Brahimi
Said Mahmoudi
K. Boukhalfa
A. Moussaoui
41
47
0
31 May 2019
Diagnosing and Enhancing VAE Models
Diagnosing and Enhancing VAE Models
Bin Dai
David Wipf
DRL
63
380
0
14 Mar 2019
Variational Autoencoders Pursue PCA Directions (by Accident)
Variational Autoencoders Pursue PCA Directions (by Accident)
Michal Rolínek
Dominik Zietlow
Georg Martius
OODDRL
69
152
0
17 Dec 2018
ImageNet-trained CNNs are biased towards texture; increasing shape bias
  improves accuracy and robustness
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
103
2,670
0
29 Nov 2018
Deep learning in agriculture: A survey
Deep learning in agriculture: A survey
A. Kamilaris
F. Prenafeta-Boldú
75
3,006
0
31 Jul 2018
Understanding disentangling in $β$-VAE
Understanding disentangling in βββ-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGeDRL
68
830
0
10 Apr 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGeOOD
62
1,350
0
16 Feb 2018
Fader Networks: Manipulating Images by Sliding Attributes
Fader Networks: Manipulating Images by Sliding Attributes
Guillaume Lample
Neil Zeghidour
Nicolas Usunier
Antoine Bordes
Ludovic Denoyer
MarcÁurelio Ranzato
DRLGAN
98
545
0
01 Jun 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
188
5,989
0
04 Mar 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
126
1,721
0
01 Dec 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
318
20,023
0
07 Oct 2016
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
  Embeddings
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
Tolga Bolukbasi
Kai-Wei Chang
James Zou
Venkatesh Saligrama
Adam Kalai
CVBMFaML
110
3,139
0
21 Jul 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
159
4,235
0
12 Jun 2016
Using Deep Learning for Image-Based Plant Disease Detection
Using Deep Learning for Image-Based Plant Disease Detection
Sharada Mohanty
David P. Hughes
M. Salathé
43
3,119
0
11 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
16,990
0
16 Feb 2016
Discriminative Regularization for Generative Models
Discriminative Regularization for Generative Models
Alex Lamb
Vincent Dumoulin
Aaron Courville
DRL
95
65
0
09 Feb 2016
Ladder Variational Autoencoders
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDLDRL
97
912
0
06 Feb 2016
Explaining NonLinear Classification Decisions with Deep Taylor
  Decomposition
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition
G. Montavon
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek
Klaus-Robert Muller
FAtt
60
737
0
08 Dec 2015
Why are deep nets reversible: A simple theory, with implications for
  training
Why are deep nets reversible: A simple theory, with implications for training
Sanjeev Arora
Yingyu Liang
Tengyu Ma
47
54
0
18 Nov 2015
From Facial Parts Responses to Face Detection: A Deep Learning Approach
From Facial Parts Responses to Face Detection: A Deep Learning Approach
Shuo Yang
Ping Luo
Chen Change Loy
Xiaoou Tang
CVBM
76
570
0
22 Sep 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
248
4,672
0
21 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,386
0
04 Sep 2014
1