Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.03082
Cited By
v1
v2
v3
v4 (latest)
Achieving Explainability for Plant Disease Classification with Disentangled Variational Autoencoders
5 February 2021
Harshana Habaragamuwa
Y. Oishi
Kenichi Tanaka
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Achieving Explainability for Plant Disease Classification with Disentangled Variational Autoencoders"
29 / 29 papers shown
Title
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
103
378
0
30 Apr 2020
Concept Whitening for Interpretable Image Recognition
Zhi Chen
Yijie Bei
Cynthia Rudin
FAtt
76
320
0
05 Feb 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
121
6,269
0
22 Oct 2019
Interpretable Image Recognition with Hierarchical Prototypes
Peter Hase
Chaofan Chen
Oscar Li
Cynthia Rudin
VLM
83
111
0
25 Jun 2019
Automatic estimation of heading date of paddy rice using deep learning
Sai Vikas Desai
V. Balasubramanian
T. Fukatsu
S. Ninomiya
Wei Guo
87
74
0
19 Jun 2019
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
89
2,354
0
06 Jun 2019
Improving Variational Autoencoder with Deep Feature Consistent and Generative Adversarial Training
Xianxu Hou
Ke Sun
Linlin Shen
Guoping Qiu
GAN
DRL
48
53
0
04 Jun 2019
Deep interpretable architecture for plant diseases classification
Mohammed Brahimi
Said Mahmoudi
K. Boukhalfa
A. Moussaoui
41
47
0
31 May 2019
Diagnosing and Enhancing VAE Models
Bin Dai
David Wipf
DRL
63
380
0
14 Mar 2019
Variational Autoencoders Pursue PCA Directions (by Accident)
Michal Rolínek
Dominik Zietlow
Georg Martius
OOD
DRL
69
152
0
17 Dec 2018
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
103
2,670
0
29 Nov 2018
Deep learning in agriculture: A survey
A. Kamilaris
F. Prenafeta-Boldú
75
3,006
0
31 Jul 2018
Understanding disentangling in
β
β
β
-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGe
DRL
68
830
0
10 Apr 2018
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
62
1,350
0
16 Feb 2018
Fader Networks: Manipulating Images by Sliding Attributes
Guillaume Lample
Neil Zeghidour
Nicolas Usunier
Antoine Bordes
Ludovic Denoyer
MarcÁurelio Ranzato
DRL
GAN
98
545
0
01 Jun 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
5,989
0
04 Mar 2017
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
126
1,721
0
01 Dec 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
318
20,023
0
07 Oct 2016
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
Tolga Bolukbasi
Kai-Wei Chang
James Zou
Venkatesh Saligrama
Adam Kalai
CVBM
FaML
110
3,139
0
21 Jul 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
159
4,235
0
12 Jun 2016
Using Deep Learning for Image-Based Plant Disease Detection
Sharada Mohanty
David P. Hughes
M. Salathé
43
3,119
0
11 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,990
0
16 Feb 2016
Discriminative Regularization for Generative Models
Alex Lamb
Vincent Dumoulin
Aaron Courville
DRL
95
65
0
09 Feb 2016
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDL
DRL
97
912
0
06 Feb 2016
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition
G. Montavon
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek
Klaus-Robert Muller
FAtt
60
737
0
08 Dec 2015
Why are deep nets reversible: A simple theory, with implications for training
Sanjeev Arora
Yingyu Liang
Tengyu Ma
47
54
0
18 Nov 2015
From Facial Parts Responses to Face Detection: A Deep Learning Approach
Shuo Yang
Ping Luo
Chen Change Loy
Xiaoou Tang
CVBM
76
570
0
22 Sep 2015
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
248
4,672
0
21 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.7K
100,386
0
04 Sep 2014
1